Dottorato in Fisica , 36o ciclo (2020-2023) Dottorato concluso nel 2024 Tesi: A data-agnostic statistical mechanics approach for studying deep neural networks beyond the infinite-width limit (Abstract) Tutori: Riccardo Zecchina Pubblicazioni Pubblicazioni durante il dottorato Vedi tutte le pubblicazioni su Porto@Iris Pacelli, Rosalba (2024)A data-agnostic statistical mechanics approach for studying deep neural networks beyond the infinite-width limit. relatore: ZECCHINA, RICCARDO; , 36. XXXVI Ciclo, P.: 154 Doctoral Thesis Baldassi, C.; Lauditi, C.; Malatesta, E. M.; Pacelli, R.; Perugini, G.; Zecchina, R. (2022)Learning through atypical phase transitions in overparameterized neural networks. In: PHYSICAL REVIEW. E, vol. 106. ISSN 2470-0053 Contributo su Rivista Ariosto, S.; Pacelli, R.; Ginelli, F.; Gherardi, M.; Rotondo, P. (2022)Universal mean-field upper bound for the generalization gap of deep neural networks. In: PHYSICAL REVIEW. E, vol. 105. ISSN 2470-0053 Contributo su Rivista