
Dottorato in Intelligenza Artificiale , 37o ciclo (2021-2024)
Dottorato concluso nel 2025
Tesi:
Federated Survival Analysis: Ensemble and Neural Methods for Distributed Time-to-Event Data
Tutori:
Matteo MatteucciDanilo ArdagnaPubblicazioni
Pubblicazioni durante il dottorato Vedi tutte le pubblicazioni su Porto@Iris
- Stranieri, Francesco; Archetti, Alberto; Robbiano, Enrico; Kouki, Chaaben; Stella, Fabio (2024)
Drug Inventory Control: Human Decisions Versus Deep Reinforcement Learning. In: 3rd Italian Workshop on Artificial Intelligence and Applications for Business and Industries 2023 (AIABI 2023), Rome (Italy), November 9, 2023. ISSN 1613-0073
Contributo in Atti di Convegno (Proceeding) - Archetti, Alberto; Lomurno, Eugenio; Lattari, Francesco; Martin, Andre; Matteucci, Matteo (2023)
Heterogeneous Datasets for Federated Survival Analysis Simulation. In: 14th Annual ACM/SPEC International Conference on Performance Engineering, ICPE 2023, Coimbra (PRT), 2023, pp. 173-180. ISBN: 9798400700729
Contributo in Atti di Convegno (Proceeding) - Archetti, Alberto; Stranieri, Francesco; Matteucci, Matteo (2023)
Deep Survival Analysis for Healthcare: An Empirical Study on Post-Processing Techniques. In: 2nd AIxIA Workshop on Artificial Intelligence For Healthcare (HC@AIxIA 2023), Rome (Italy), November 6, 2023, pp. 99-121. ISSN 1613-0073
Contributo in Atti di Convegno (Proceeding) - Archetti, Alberto; Matteucci, Matteo (2023)
Federated Survival Forests. In: 2023 International Joint Conference on Neural Networks, Gold Coast (AU), 18-23 June 2023, pp. 1-9. ISBN: 978-1-6654-8867-9
Contributo in Atti di Convegno (Proceeding) - Lomurno, Eugenio; Archetti, Alberto; Cazzella, Lorenzo; Samele, Stefano; Di Perna, ... (2022)
SGDE: Secure Generative Data Exchange for Cross-Silo Federated Learning. In: AIPR 2022, 5th International Conference on Artificial Intelligence and Pattern Recognition, Xiamen (CHN), September 23-25, 2022, pp. 205-214
Contributo in Atti di Convegno (Proceeding) - Archetti, Alberto; Cannici, Marco; Matteucci, Matteo (2022)
Neural Weighted A*: Learning Graph Costs and Heuristics with Differentiable Anytime A*. In: LOD 2021, 7th International Online & Onsite Conference on Machine Learning, Optimization, and Data Science, Grasmere, Lake District, England, UK, October 4-8, 2021, pp. 596-610. ISBN: 978-3-030-95466-6
Contributo in Atti di Convegno (Proceeding)