
Dottorato in Ingegneria Elettrica, Elettronica E Delle Comunicazioni , 37o ciclo (2021-2024)
Dottorato concluso nel 2025
Tesi:
Resource-Aware and Resilient Learning in Mobile Networks (Abstract)
Tutori:
Carla Fabiana ChiasseriniProfilo
Argomento di ricerca
Distributed Machine Learning
Interessi di ricerca
Biografia
He obtained his Bachelor’s Degree at Politecnico di Torino in Electronic Engineering in 2018. Then, in his Masters’ studies, he joined a double degree program, which allowed him to graduate in ICT For Smart Societies, at Politecnico di Torino, and in Data Science and Engineering, at EURECOM (Biot, France).
From May 2021 he is a PhD student in Electrical, Electronics and Communications Engineering under the supervision of Professor Carla Fabiana Chiasserini. The focus of his research is distributed Machine Learning. In particular, he studies methods such as Federated Learning and Split Learning, in order to find efficient techniques that would allow reducing the energy required to train the increasingly power-demanding Deep Learning models. Also, he is interested in the potential application of diffusion models, a powerful family of generative models, in communication systems for image transmission, in order to decrease bandwidth usage and communication costs.
Pubblicazioni
Pubblicazioni durante il dottorato Vedi tutte le pubblicazioni su Porto@Iris
- DI GIACOMO, Giuseppe (2025)
Resource-Aware and Resilient Learning in Mobile Networks. relatore: CHIASSERINI, Carla Fabiana; , 37. XXXVII Ciclo, P.: 160
Doctoral Thesis - Di Giacomo, G.; Franzese, G.; Cerquitelli, T.; Chiasserini, C. F.; Michiardi, P. (2024)
DiMViDA: Diffusion-based Multi-View Data Augmentation. In: 2024 IEEE 29th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Athens (Gre), 21-23 October 2024
Contributo in Atti di Convegno (Proceeding) - DI GIACOMO, Giuseppe; Malandrino, Francesco; Chiasserini, Carla Fabiana (2024)
Generosity Pays Off: A Game-Theoretic Study of Cooperation in Decentralized Learning. In: IEEE ICC 2024 Workshop - Edge5GMN, Denver (USA), 9-13 June 2024. ISBN: 979-8-3503-0405-3
Contributo in Atti di Convegno (Proceeding) - Malandrino, F.; Di Giacomo, G.; Levorato, M.; Chiasserini, C. F. (2024)
Dependable Distributed Training of Compressed Machine Learning Models. In: IEEE WoWMoM 2024, Perth (Australia), 04-07 June 2024. ISBN: 979-8-3503-9466-5
Contributo in Atti di Convegno (Proceeding) - DI GIACOMO, Giuseppe; Franzese, Giulio; Cerquitelli, Tania; Chiasserini, Carla Fabiana; ... (2024)
DiMViS: Diffusion-based Multi-View Synthesis. In: ICML 2024 Workshop on Structured Probabilistic Inference & Generative Modeling 2nd SPIGM @ ICML, Vienna (Austria), 21-27 July 2024
Contributo in Atti di Convegno (Proceeding) - Malandrino, Francesco; Di Giacomo, Giuseppe; Karamzade, Armin; Levorato, Marco; ... (2024)
Tuning DNN Model Compression to Resource and Data Availability in Cooperative Training. In: IEEE-ACM TRANSACTIONS ON NETWORKING, vol. 32, pp. 1600-1615. ISSN 1063-6692
Contributo su Rivista - Malandrino, Francesco; Chiasserini, Carla Fabiana; DI GIACOMO, Giuseppe (2023)
Efficient Distributed DNNs in the Mobile-edge-cloud Continuum. In: IEEE-ACM TRANSACTIONS ON NETWORKING, vol. 31, pp. 1702-1716. ISSN 1063-6692
Contributo su Rivista - Morra, Lia; Azzari, Alberto; Bergamasco, Letizia; Braga, Marco; Capogrosso, Luigi; ... (2023)
Designing Logic Tensor Networks for Visual Sudoku puzzle classification. In: 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023), Certosa di Pontignano, Siena (Italia), July 3-5, 2023, pp. 223-232. ISSN 1613-0073
Contributo in Atti di Convegno (Proceeding) - Malandrino, F.; Di Giacomo, G.; Karamzade, A.; Levorato, M.; Chiasserini, C. F. (2023)
Matching DNN Compression and Cooperative Training with Resources and Data Availability. In: IEEE INFOCOM 2023, New York City, NY, USA, 17-20 May, 2023. ISBN: 979-8-3503-3414-2
Contributo in Atti di Convegno (Proceeding) - DI GIACOMO, Giuseppe; Franzese, Giulio; Cerquitelli, Tania; Chiasserini, Carla Fabiana; ... (2023)
Multi-View Latent Diffusion. In: 2023 IEEE International Conference on Big Data, Sorrento (Italy), 15-18 December 2023. ISBN: 979-8-3503-2445-7
Contributo in Atti di Convegno (Proceeding) - Malandrino, F.; Chiasserini, C. F.; Di Giacomo, G. (2022)
Energy-efficient Training of Distributed DNNs in the Mobile-edge-cloud Continuum. In: WONS 2022, Online due to COVID-19, 30 March 2022 - 01 April 2022. ISBN: 978-3-903176-46-1
Contributo in Atti di Convegno (Proceeding) - Dang, V. N.; Galati, F.; Cortese, R.; Di Giacomo, G.; Marconetto, V.; Mathur, P.; ... (2022)
Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation. In: MEDICAL IMAGE ANALYSIS, vol. 75. ISSN 1361-8415
Contributo su Rivista - Di Giacomo, G.; Haerri, Jerome; Chiasserini, Carla Fabiana (2022)
Edge-assisted Gossiping Learning: Leveraging V2V Communications between Connected Vehicles. In: 25th IEEE Intelligent Transportation Systems Conference (ITSC 2022), Macau, China, 08-12 October 2022, pp. 3920-3927. ISBN: 978-1-6654-6880-0
Contributo in Atti di Convegno (Proceeding)