![](https://legacyprod.polito.it/personale/images/sagoma.png)
Ph.D. candidate in Energetica , 37th cycle (2021-2024)
Department of Energy (DENERG)
Personale di altro Ente/Ditta esterna
University Sustainability, Research Infrastructures and Laboratories (SAIL)
Profile
PhD
Tutors
Teaching
Teachings
Master of Science
- Gestione energetica e automazione negli edifici. A.A. 2022/23, INGEGNERIA ENERGETICA E NUCLEARE. Collaboratore del corso
- Gestione energetica e automazione negli edifici. A.A. 2021/22, INGEGNERIA ENERGETICA E NUCLEARE. Collaboratore del corso
Bachelor of Science
- Fisica dell'edificio e climatizzazione. A.A. 2023/24, INGEGNERIA ENERGETICA. Collaboratore del corso
Publications
PoliTO co-authors
Latest publications View all publications in Porto@Iris
- Chiosa, Roberto; Piscitelli, Marco Savino; Pritoni, Marco; Capozzoli, Alfonso (2024)
A portable application framework for energy management and information systems (EMIS) solutions using Brick semantic schema. In: ENERGY AND BUILDINGS, vol. 323. ISSN 0378-7788
Contributo su Rivista - Garcia Navarro, Alberto Manuel; Rocca, Vera; Capozzoli, Alfonso; Chiosa, Roberto; Verga, ... (2024)
Investigation of ground movements induced by underground gas storages via unsupervised ML methodology applied to InSAR data. In: GAS SCIENCE AND ENGINEERING, vol. 125, pp. 1-20. ISSN 2949-9089
Contributo su Rivista - Chen, Z.; O'Neill, Z.; Wen, J.; Pradhan, O.; Yang, T.; Lu, X.; Lin, G.; Miyata, S.; Lee, ... (2023)
A review of data-driven fault detection and diagnostics for building HVAC systems. In: APPLIED ENERGY, vol. 339. ISSN 0306-2619
Contributo su Rivista - Fan, C.; Lin, Y.; Piscitelli, M. S.; Chiosa, R.; Wang, H.; Capozzoli, A.; Ma, Y. (2023)
Leveraging graph convolutional networks for semi-supervised fault diagnosis of HVAC systems in data-scarce contexts. In: BUILDING SIMULATION. ISSN 1996-3599
Contributo su Rivista - Chiosa, R.; Piscitelli, M. S.; Fan, C.; Capozzoli, A. (2022)
Towards a self-tuned data analytics-based process for an automatic context-aware detection and diagnosis of anomalies in building energy consumption timeseries. In: ENERGY AND BUILDINGS, vol. 270. ISSN 0378-7788
Contributo su Rivista