
Ph.D. candidate in Ingegneria Informatica E Dei Sistemi , 39th cycle (2023-2026)
Department of Control and Computer Engineering (DAUIN)
Docente esterno e/o collaboratore didattico
Department of Control and Computer Engineering (DAUIN)
Profile
PhD
Research topic
New Techniques for Reliability Evaluation and Enhancement of Neural Networks
Tutors
Research interests
Biography
Teaching
Teachings
Master of Science
- Computational intelligence. A.A. 2024/25, INGEGNERIA INFORMATICA (COMPUTER ENGINEERING). Collaboratore del corso
Research
Research groups
Publications
Latest publications View all publications in Porto@Iris
- Esposito, G.; Guerrero-Balaguera, J. -D.; Rodriguez Condia, J. E.; Sonza Reorda, M. (2025)
Comparing Application-Level Hardening Techniques for Neural Networks on GPUs. In: ELECTRONICS, vol. 14. ISSN 2079-9292
Contributo su Rivista - Sierra, Robert Limas; Esposito, Giuseppe; Guerrero-Balaguera, Juan-David; Rodriguez ... (2025)
Improving CNN Runtime Robustness Against Soft Errors by Dropout Layer Optimization. In: 2025 IEEE 26th Latin American Test Symposium (LATS), San Andres Islas (COL), 11-14 March 2025, pp. 1-6. ISBN: 978-1-6654-7763-5
Contributo in Atti di Convegno (Proceeding) - Caro-Anzola, Edward-W.; Esposito, Giuseppe; Guerrero-Balaguera, Juan-David; ... (2025)
IoT and Edge Computing: Applications and Reliability Implications. In: 2025 IEEE 26th Latin American Test Symposium (LATS), San Andres Island (COL), 11-14 March 2025, pp. 1-10. ISBN: 978-1-6654-7763-5
Contributo in Atti di Convegno (Proceeding) - Esposito, Giuseppe; Guerrero Balaguera, Juan David; Rodriguez Condia, Josie Esteban; ... (2024)
Evaluating Different Fault Injection Abstractions on the Assessment of DNN SW Hardening Strategies. In: 33rd IEEE Asian Test Symposium (ATS 2024), Ahmedabad, Gujarat (IND), 17th -20th December 2024, pp. 1-6. ISBN: 979-8-3315-2916-1
Contributo in Atti di Convegno (Proceeding) - Chen, Junchao; Esposito, Giuseppe; Fernandes dos Santos, Fernando; Guerrero-Balaguera, ... (2024)
Reliability Assessment of Large DNN Models:Trading Off Performance and Accuracy. In: 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-SoC), Tanger (MAR), 06-09 October 2024, pp. 1-10. ISBN: 979-8-3315-3967-2
Contributo in Atti di Convegno (Proceeding)