PACGEL - Plasma-ACtivated hydroGEL: new frontiers solutions in cardiac regenerative medicine
Duration:
Principal investigator(s):
Project type:
Funding body:
Project identification number:
PoliTo role:
Abstract
Heart diseases represent the main leading cause of mortality in EU and other industrialized countries. The development of minimallyinvasive therapies to treat cardiovascular injuries is the subject of intense investigation by the cardiac regenerative medicine community. Moreover, in vitro models of human cardiac pathological tissues mimicking disease-specific oxidative conditions are demanded for understanding pathological mechanisms at different disease stages, and for the development and preclinical validation of novel therapies, at reduced costs and in compliance with 3Rs (Reduction, Refinement, Replacement) principle. PACGEL aims at the design of novel plasma jet-activated hydrogels based on biocompatible polymers, to be exploited as: (i) injectable stimulating systems to promote cardiac tissue regeneration and (ii) in vitro models of diseased cardiac tissue with tunable oxidative conditions. The biological effect will depend on the doses and types of reactive oxygen and nitrogen species encapsulated in the hydrogels, modulated by the plasma jet treatment parameters. The objectives are: (1) to identify the minimal reactive species concentration (threshold limit) above which oxidative effects prevail, by in vitro tests with relevant human cardiac cells; 2) to develop plasma jet-activated hydrogels with regenerative potential; 3) to design in vitro 3D bio-printed tissue models mimicking different stages of human cardiac diseases. My expertise in Plasma Medicine and Chemistry, the supervisor’s consolidated competence in biomaterials design, tissue engineering and cardiac regenerative medicine, my proof-of-concept preliminary results and the availability of all the needed facilities and training opportunities at the Host Institution will ensure the research progress. Furthermore, PACGEL will address one major societal challenge such as the treatment of age-related cardiac diseases exploiting green technologies, thus achieving still a greater impact on society.
Structures
Keywords
ERC sectors
Sustainable Development Goals
Budget
Total cost: | € 172,750.08 |
---|---|
Total contribution: | € 172,750.08 |
PoliTo total cost: | € 172,750.08 |
PoliTo contribution: | € 172,750.08 |
Communication activities
- https://archivio-poliflash.polito.it/ricerca_e_innovazione/finanziati_sei_nuovi_progetti_marie_curie
Articolo Poliflash del 19/02/2020. - https://archivio-poliflash.polito.it/ricerca_e_innovazione/sei_progetti_di_ricerca_individuali_finanziati_da_marie_sklodowska_curie_actions_di_horizon_europe
Articolo Poliflash del 20/10/2022. - https://cordis.europa.eu/project/id/101067882
Project website link .