Un sistema integrato che raccoglie le informazioni da tutto l'Ateneo e permette di esplorare con rapidità, efficacia e trasparenza le competenze, mettendo a disposizione i dati relativi alla produzione scientifica, ai progetti di ricerca, ai brevetti e a tutte le informazioni di rilievo sull’attività di ricerca. Tramite la funzione di ricerca si possono scoprire gli ambiti di ricerca, le persone, le strutture e i risultati dalla ricerca condotta al Politecnico di Torino. È possibile cercare per parola chiave, nome persona, titolo progetto, in lingua italiana o inglese. Il sistema restituirà gli elementi presenti nei database del Politecnico di Torino, compresi i profili completi del personale.
IN-DEEP - Real-time inversion using self-explainable deep learning driven by expert knowledge
Durata:
Responsabile scientifico:
Tipo di progetto:
Ente finanziatore:
Codice identificativo progetto:
Ruolo PoliTo:
Abstract
IN-DEEP is a European Doctoral Network composed of nine doctoral candidates (DCs) and top scientists with complementary areas of expertise in applied mathematics, artificial intelligence, high-performance computing, and engineering applications. Its main goal is to provide high-level training to the nine DCs in designing, implementing, and using explainable knowledge-driven Deep Learning (DL) algorithms for rapidly and accurately solving inverse problems governed by partial differential equations (PDEs).Inverse problems in which the unknown parameters are connected to experimental measurements through PDEs cover from medical applications - like cancer growth assessment - to the safety of civil infrastructures, and green geophysical applications such as geothermal energy production. Their application value is measured in human lives and society's well-being, which goes beyond any quantifiable amount of money. This is why equipping a new generation of specialists with highly-demanded skills for the upcoming transition toward safe and robust AI-based technologies is imperative.Despite the promising results in many applications, DL for PDEs has severe limitations. The most troublesome is its lack of a solid theoretical background and explainability, which prevents potential users from integrating them into high-risk applications.IN-DEEP aims to remove these constraints to unleash the full potential of DL algorithms for PDEs. We will achieve this by: (a) focusing on emerging applications of DL for PDEs with immense societal and/or industrial value, (b) designing mathematics-infused advanced solvers to address them efficiently, and (c) involving, from the beginning, industrial and technological agents which can monitor, upscale, and exploit this knowledge. On the way, we shall establish the foundations of a better knowledge exchange ecosystem amongst the main academic and industrial actors within Europe, disseminating the results worldwide.
Strutture coinvolte
Partner
- AGH Akademia Gorniczo Hutnicza im Stanislawa Staszica
 - BCAM- Basque Center for Applied Mathematics
 - ENSAM - ECOLE NATIONALE SUPERIEURE DES ARTS ET METIERS
 - FUNDACION CURSOS DE VERANO UPV/EHU - Coordinatore
 - FUNDACION TECNALIA RESEARCH & INNOVATION
 - POLITECNICO DI TORINO - AMMINISTRAZIONE CENTRALE
 - SIEMENS INDUSTRY SOFTWARE S.R.L.
 - UNIVERSITA' DEGLI STUDI DI PAVIA
 - UNIVERSITY OF NOTTINGHAM
 
Parole chiave
Settori ERC
Obiettivi di Sviluppo Sostenibile (Sustainable Development Goals)
Budget
| Costo totale progetto: | € 2.046.614,40 | 
|---|---|
| Contributo totale progetto: | € 2.046.614,40 | 
| Costo totale PoliTo: | € 259.437,60 | 
| Contributo PoliTo: | € 259.437,60 |