Anagrafe della ricerca

BOHEME - FETOPEN-01-2018-2019-2020

Durata:
49 mesi (2023)
Responsabile scientifico:
Tipo di progetto:
Ricerca UE - H2020 - Excellent Science - FET
Ente finanziatore:
COMMISSIONE EUROPEA
Codice identificativo progetto:

Abstract

BOHEMEs ambitious goal is to design and realize a new class of bioinspired mechanical metamaterials for novel applicative tools in diverse technological fields. Metamaterials exhibit exotic vibrational properties currently unavailable in Nature, and numerous important applications are emerging. However, universally valid design criteria are currently lacking, and their effectiveness is presently restricted to limited frequency ranges. BOHEME starts from an innovative assumption, increasingly supported by experimental evidence, that the working principle behind metamaterials is already exploited in Nature, and that through evolution, this has given rise to optimized designs for impact damping. The fundamental science part of the project aims to explore biological structural materials for evidence of this, to investigate novel optimized bioinspired designs (e.g. porous hierarchical structures spanning various length scales) using state-of-the-art analytical and numerical approaches, to design and manufacture vibrationally effective structures, and to experimentally verify their performance over wide frequency ranges. Through this disruptive approach, BOHEME will provide a pipeline to the technological development of a new class of bioinspired metamaterials in innovative applicative sectors over various wavelength scales, from non-destructive testing, to noise reduction, to low-frequency vibration control (including seismic), to coastal protection or energy harvesting from ocean waves. Industrial partners will provide know-how for proof of principle experiments and possible prototypes. The project is ambitious and inherently multidisciplinary, involving research in biology, mathematics, physics, materials science, structural and ocean engineering, drawing from scientific excellence of the partners. It involves theoretical, numerical and experimental aspects, and is a high-impact endeavour, from which basic science, EU industry and society can benefit.

Strutture coinvolte

Partner

  • UNIVERSITA' STUDI TRENTO - Coordinatore

Budget

Costo totale progetto: € 3.226.250,00
Contributo totale progetto: € 3.226.250,00
Costo totale PoliTo: € 412.500,00
Contributo PoliTo: € 412.500,00