

ENERGETICS

DENERG - High-performance hydrogen-fueled IC engines

Funded By	Dipartimento DENERG
Supervisor	SPESSA EZIO - ezio.spessa@polito.it
Contact	
Context of the research activity	<p>The road transport sector is shifting toward sustainable solutions to address climate change. For hard-to-abate sectors, hydrogen-fueled internal combustion engines offer a viable low-carbon alternative to full electrification. Despite strong industrial interest, H₂ ICEs still face performance gaps compared to conventional engines. This research focuses on identifying and optimizing key performance enablers to maximize power and torque while ensuring ultra-low NO_x emissions, using a high-performance sports car engine as a benchmark.</p>
Objectives	<p>The objective of this project is to address the existing gaps in the development of an effective hydrogen-fueled internal combustion engine (H₂-ICE) solution for high-performance automotive propulsion. In such applications, achieving performance levels comparable to the original gasoline-powered configuration is essential, while simultaneously meeting stringent limits on NO_x emissions and mitigating the risk of abnormal combustion phenomena.</p> <p>To reach these ambitious goals, several “performance enablers” will be investigated for their contribution to the optimization of the full-load operating curve. These include turbocharger optimization and matching, direct injection strategies, charge dilution techniques, and advanced thermal management and cooling concepts.</p> <p>The proposed research will systematically assess the potential of each enabler, evaluating the trade-offs between torque output, NO_x emissions, and safety margins related to abnormal combustion events.</p> <p>To this end, the project will adopt a combined 1D–3D numerical approach, which provides the optimal balance between computational accuracy and cost. System-level analyses of the engine and turbocharging systems will be conducted using a 0D/1D modeling framework (e.g., GT-Power), enabling rapid evaluation of global performance trends.</p> <p>In parallel, 3D computational fluid dynamics (CFD) models will be developed to capture the detailed in-cylinder processes governing hydrogen combustion—particularly the reactive behavior of hydrogen–air mixtures, in-cylinder turbulence, and turbulence–combustion interactions.</p> <p>While the use of combined 1D–3D methodologies is gaining wider</p>

acceptance in advanced engine development, a significant knowledge gap remains in their application to high-performance hydrogen ICEs. This project aims to fill that gap, generating new insights into the design, control, and optimization of such engines. Moreover, it is expected to deliver a substantial advancement in the formulation of accurate and flexible combustion models suitable for highly turbulent, hydrogen-fueled systems.

Research Plan and Work Structure

Task 1 – 1D Modeling

- 1.1 Development of a 1D engine simulation model and correlation with experimental data under gasoline fueling (diagnostic and predictive models).
- 1.2 Preliminary conversion of the 1D model to hydrogen fueling with a Port Fuel Injection (PFI) system, informed by predictive 3D modeling results under H₂ fueling (Tasks 2.2–2.4).
- 1.3 Validation and assessment of the 1D model under H₂ fueling.
- 1.4 Predictive simulation for performance optimization and identification of key performance enablers, including H₂ Direct Injection (H₂ DI).

Task 2 – 3D Modeling

- 2.1 Development of a 3D engine simulation model and correlation with experimental data under gasoline PFI operation.
- 2.2 Formulation of a predictive, fuel-flexible (PFI) combustion model.
- 2.3 Assessment of the 3D model under hydrogen fueling (PFI configuration).
- 2.4 Characterization of combustion behavior under hydrogen fueling in PFI mode.
- 2.5 Development of a 3D engine simulation model for H₂ DI operation.

Skills and competencies for the development of the activity

The candidate must have knowledge of basic technical characteristics of turbocharged engines working principles and turbomatching optimization. Also, a basic knowledge of 0D/1D modelling (either with commercial or in-house codes) of fluid-dynamics and combustion (diagnostic or predictive models) is welcome. Experience in Computational Fluid Dynamics, in C or Matlab programming may represent an added value.