

BIOENGINEERING AND MEDICAL-SURGICAL SCIENCES

UNITO - Full Digital Workflow for Orthognathic Surgery: Predictability and Accuracy of Virtual Occlusion Tools.

Funded By	UNIVERSITA' DEGLI STUDI DI TORINO [P.iva/CF:02099550010]
Supervisor	RAMIERI GUGLIELMO - guglielmo.ramieri@polito.it
Contact	
Context of the research activity	3D planning systems has revolutionized orthographic surgery, allowing to define osteotomies on a virtual skull, to evaluate multiple solutions and to determine the positioning of bone segments, enhancing the predictability and satisfaction of aesthetic results. However, occlusion planning is still predominantly performed using plaster casts or 3D-printed models, which is often time consuming. Further improvement may come from the use of virtual occlusion tools for occlusal prediction.
Objectives	Objectives Defining optimal occlusion is essential in the surgical planning process, as it establishes the relative positioning of the mandibular and maxillary bone fragments. Despite its importance, there is a paucity of studies which analyse the accuracy of digital occlusal planning with computer-aided systems. Current methodologies primarily rely on aligning upper and lower dental models based on manually indicated corresponding points. The accuracy of these methods is hard to confirm since the contact behaviour between the upper and lower dentition is not modelled and the impenetrability of teeth is not guaranteed. Other methods described include a rigid motion simulation engine that ensures the impenetrability of the dental models semi- automatically. Nonetheless, the resultant occlusion remains operator- dependent, lacking automated evaluation mechanisms. Consequently, the use of a full digital workflow continues to be a subject of debate, with limited integration into routine clinical practice. With the aim of bringing 3D imaging and computer-aided planning one step closer to practice, this research will investigate the accuracy and predictability of existing tools for virtual occlusion definition. The study will aim to establish guidelines to guide surgeons through the full digital planning process, including decisions regarding the need to execute segmental maxillary osteotomy without reliance on physical models' transverse diameter relationships (e.g. basing on digitally measurable parameters as the maxillary and mandibular intermolar distance ratio and the depth of the Spee Curve).

Skills and	Applicants must hold a degree in Medicine and Surgery and advanced
competencies	knowledge in Maxillofacial surgery.
for the	Experience and publications in the treatment of facial deformities and
development of	application of digital technologies to maxillofacial surgery will be considered
the activity	for selection.