ESAME DI STATO PER L'ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE

SECONDA SESSIONE 2024 – SEZIONE A

Settore Industriale

COMMISSIONE 2A

PRIMA PROVA

TEMA 1: AEROSPAZIALE

Si consideri il velivolo bimotore da trasporto regionale illustrato in Figura 1 e 2:

Figura 1 - Disegno in sezione dell'aereo da trasporto regionale considerato

Figura 2 - Trittico quotato del velivolo considerato

Per il suddetto velivolo, in condizioni di crociera (cioè, volo orizzontale, stabile e rettilineo a velocità costante), si considerino le seguenti caratteristiche:

KTAS	270	ł	kn (500 km/)	h)
Peso velivolo W	160	1	kN	
Quota di volo z _{cruise}	22966	f	ft (7000 m)	
<i>C</i> _{D0}	0.019			
C _{Lmax} (sen	lza 1.4			
ipersostentatori)				

Tabella 1

Inoltre, trascurando in prima approssimazione gli effetti dovuti agli impennaggi e alla fusoliera, si assuma che la polare del velivolo sia esprimibile mediante la formulazione di Prandtl:

$$C_D = C_{D0} + \frac{C_L^2}{\pi \cdot A}$$

- Considerando i dati forniti, calcolare l'allungamento alare A del velivolo. A = b2/Sala = 11,077
- 2. Considerando le suddette condizioni di volo in crociera calcolare:
 - a. la portanza *L* sviluppata dal velivolo
 - b. il relativo coefficiente di portanza *C*_{Lcruise}
 - c. il corrispondente coefficiente di resistenza aerodinamica $C_{Dcruise}$
 - d. la trazione necessaria *T*, erogata complessivamente dai due propulsori del velivolo
 - e. l'efficienza aerodinamica *E*_{cruise} associata alle condizioni di volo considerate.
- 3. Calcolare la velocità minima di sostentamento del velivolo in volo senza ipersostentatori alla quota di crociera z_{cruise}
- 4. Per il velivolo in volo livellato alla quota di crociera z_{cruise} , determinare la velocità di volo V_{Emax} corrispondente alle condizioni di massima efficienza aerodinamica E_{max}

5. L'impennaggio verticale del velivolo, composto dall'insieme deriva + timone, è costituito da una velatura a profilo biconvesso simmetrico (Figura 3).

Figura 3 – Schematico dell'impennaggio verticale del velivolo

In prima approssimazione, trascurando la modesta rastremazione in apertura e l'area del becco di compensazione di estremità, il timone ha una corda c = 1 [m] e una superficie complessiva $S = 6 [m^2]$.

Il massimo angolo di derapata (o di sideslip) previsto in tali condizioni di volo è $\delta_{max} = \pm 10^{\circ}$.

Nelle condizioni di volo considerate, il requisito di velocità dell'azionamento che movimenta il timone prevede il raggiungimento dell'angolo di barra massimo ($\tau_{max} = \pm 15^{\circ}$) in un tempo pari a 1 secondo.

Il momento di cerniera M_c sviluppato dal timone può essere modellato dall'equazione linearizzata

$$M_C = C_{mc} \, \frac{1}{2} \, \rho \, V^2 \, Sc$$

in cui il coefficiente di momento può essere espresso come:

 $C_{mc} = k_a \delta + k_b \tau$

Si assumano $k_a = 0,219 \left[\frac{1}{rad}\right] e k_b = 0,236 \left[\frac{1}{rad}\right].$

- a. Calcolare il valore massimo del momento di cerniera $M_{C max}$ agente sul timone dell'impennaggio verticale nelle condizioni di volo definite in Tabella 1.
- 6. Il timone è attuato mediante il servocomando idraulico schematicamente illustrato in Figura 4:

Figura 4 – Schematico del servomeccanismo di attuazione del timone

Il cinematismo che collega lo stelo dell'attuatore idraulico al timone ha un braccio b = 0.2 [m].

Si consideri quanto già definito al punto 5 in merito al comando di volo, e si assuma che:

- la servovalvola possa erogare al martinetto una pressione differenziale massima $\Delta p_{max} = 200 \ [bar]$
- in condizione di funzionamento a vuoto, l'attuatore possa generare una velocità angolare di fuga del timone di 20 [°/s]
- sia applicabile il metodo del dimensionamento semplificato degli attuatori idraulici basato sul funzionamento ottimo

- a. calcolare lo sforzo massimo T_{max} previsto sull'attuatore in condizioni di $M_{C max}$
- b. calcolare l'area efficace del martinetto S_{att} (maggiorandola opportunamente in modo da compensare le perdite dovute agli attriti interni agenti sulle guarnizioni)

- c. stimare la cilindrata *C* e la corsa massima dell'attuatore
- d. calcolare la forza prodotta dall'attuatore e la corrispondente velocità angolare del timone in condizioni di funzionamento "ottimo" (rispettivamente F_{ott} e V_{ott})
- e. calcolare il massimo valore di potenza meccanica erogabile dall'attuatore nelle condizioni definite al punto precedente (ossia $P_{max} = F_{ott} \cdot V_{ott}$)
- f. calcolare la portata idraulica assorbita dal martinetto in condizioni di funzionamento ottimo (Q_{Pmax})

APPENDICE 1

International Standard Atmosphere

- $g = 9.81 \ m/s^2$.
- R = 287 J/(kgK).
- $\alpha_T = 6.5 \cdot 10^{-3} \ K/m$.
- $ho_0=1.225~kg/m^3$.
- $T_0 = 288.15 \ K.$

•
$$ISA:
ho=
ho_0(1-rac{lpha_Th}{T_0})^{rac{gR}{lpha_T}-1}$$

APPENDICE 2

Dimensionamento Preliminare dell'Attuatore:

Condizioni di Funzionamento "Ottime"

Una volta definita la massima forza sviluppabile dall'attuatore in condizioni di stallo (F_{stallo}) e la relativa velocità angolare di fuga v_{fuga} (ossia la massima velocità di attuazione ottenibile a vuoto) è possibile calcolare le condizioni di funzionamento "di ottimo", ossia le condizioni associate alla massima potenza meccanica erogabile dal martinetto, facendo riferimento alle seguenti considerazioni e al grafico illustrato in Fig. A2-1.

In prima approssimazione, è possibile correlare la forza di attuazione F(v), sviluppata da un martinetto lineare, alla corrispondente velocità di attuazione v mediante il seguente modello semplificato:

$$F(v) = F_{stallo} - k \cdot v^2$$

Pertanto, la corrispondete velocità di fuga varrà:

$$v_{fuga} = \sqrt{\frac{F_{stallo}}{k}}$$

La potenza meccanica può essere espressa come:

$$P(v) = F(v) \cdot v = F_{stallo} \cdot v - k \cdot v^3$$

Quindi, le condizioni di ottimo della potenza meccanica si ricavano come segue:

$$\frac{dP(v)}{dv} = 0 \rightarrow F_{stallo} \cdot v - 3 \cdot k \cdot v^2 = 0$$

Da cui si ricavano i valori di ottimo della forza e della velocità di attuazione:

$$F_{ott} = F_{Pmax} = \frac{2}{3}F_{stallo}$$
$$v_{ott} = v_{Pmax} = \frac{v_{fuga}}{\sqrt{3}}$$

Figura A2-1

TEMA 2: MECCANICA

Il sistema per la trasmissione del moto mostrato in Figura 1 è costituito da un motore M1 e da tre utilizzatori U1, U2 e U3. La trasmissione del moto e la ripartizione delle coppie avvengono attraverso gli ingranamenti tra la ruota dentata 1 e la ruota dentata 2, entrambe a denti elicoidali, e tra le ruote dentate 3, 4, 5 e 6, tutte a denti dritti. La ruota dentata 1 è calettata sull'albero A1, la ruota dentata 2 e la ruota dentata 3 sono calettate sull'albero A2, la ruota dentata 4 è calettata sull'albero A3, la ruota dentata 5 è calettata sull'albero A4 e la ruota dentata 6 è calettata sull'albero A5. Si hanno a disposizione i seguenti dati:

- Potenza assorbita dall'utilizzatore 1: Pu1=100 kW.
- Potenza assorbita dall'utilizzatore 2: Pu2=50 kW.
- Potenza assorbita dall'utilizzatore 3: Pu3=100 kW.
- La velocità di rotazione della ruota 1: 2800 rpm.
- I numeri di denti (indicati di seguito con la lettera z) di tutte le ruote: z1=19, z2=43, z3=37, z4=53, z5=53, z6=61;
- Angolo d'elica β della ruota dentata 1: 15°. Si consideri il verso dell'elica rappresentato in Figura 1.
- Fattore di larghezza di fascia assunto pari a 18 (λ=18) per le ruote 1 e 2, e pari a 15 (λ=15) per le ruote 3,4,5 e 6.
- Si assuma per le ruote dentate e per tutti gli alberi un acciaio con caratteristiche simili a quelle dell'acciaio 14CrMoV6 Cementato e temprato e con le seguenti proprietà: Tensione di snervamento Rp0.2=850 MPa, Carico di rottura, σ_R =1100 MPa, limite di fatica σ_{D-1} =550 MPa, modulo elastico E=200000 MPa, Fattore di intensificazione delle tensioni di soglia ΔK_{th} = 5 MPa · \sqrt{m}
- Albero A2, quote: a2=100 mm, b2=150 mm, c2=100 mm.
- Albero A1, quote: a1=90 mm, b1=80 mm, l_s =45 mm.
- Albero A3, quote: a3=130 mm: b3=120 mm.

Si assumano ragionevolmente eventuali dati non forniti.

Figura 1: schema del sistema di trasmissione (non in scala).

Si richiede di progettare o di verificare i principali componenti, secondo le seguenti richieste:

- Si calcoli il modulo di tutte le ruote dentate. In particolare, si definisca il modulo minimo unificato che devono avere le ruote dentate per garantire un coefficiente di sicurezza pari a 3 rispetto al carico di snervamento (resistenza a flessione statica).
- 2. Si calcolino le **forze scambiate** tra le ruote dentate.
- 3. Si determini la durezza Brinell tale da garantire un coefficiente di sicurezza maggiore o uguale a **1.6 rispetto alla massima tensione Hertziana di contatto** per le ruote 3,4,5,6.
- 4. **Verifica statica**: si calcolino le caratteristiche di sollecitazione per l'albero A2, **riportando i relativi diagrammi**. Si considerino le quote riportate in Figura 2. Il cuscinetto Cu4 regge il carico assiale.
- Verifica statica: per l'albero A2 si calcoli, nel punto maggiormente sollecitato, il diametro minimo tale da garantire un coefficiente di sicurezza almeno pari 3 rispetto al carico di snervamento. Si considerino le quote riportate in Figura 2.
- 6. **Verifica a fatica**: Si consideri l'albero A1. Ad una distanza pari a l_s dal centro della ruota (si veda lo schema in figura 3a) è previsto uno spallamento uguale a quello mostrato in Figura 3b, con conseguente concentrazione di tensioni. Assumendo un rapporto tra i diametri D/d pari a 1.2 e ragionevolmente i possibili dati mancanti, si calcoli il diametro

tale da garantire un **coefficiente di sicurezza a fatica pari a 2** in questa sezione. Per il calcolo, si consideri una potenza in ingresso pari al 70% della potenza in ingresso iniziale (con la stessa velocità di rotazione) e che il cuscinetto preposto per reggere i carichi assiali sia il cuscinetto Cu1. Si consideri il caso "vita infinita" per il dimensionamento.

7. Si consideri l'albero A3, il cui schema è riportato in Figura 4. Si verifichi in prima approssimazione il diametro dell'albero A3 tale da garantire che un difetto superficiale, orientato criticamente, con la geometria mostrata in Figura 5 e profondità *a* pari a 5 mm non propaghi. Si consideri il fattore di forma riportato in Figura 5 e una potenza in ingresso pari al 70% della potenza in ingresso iniziale (con la stessa velocità di rotazione in ingresso). Si esegua cautelativamente il calcolo nel punto maggiormente sollecitato.

Albero A2

Figura 2: dettaglio dell'albero A2 e relative quote (non in scala)

(b)

Figura 3: dettagli dell'albero A1 per il dimensionamento a fatica: a) schema; b) dettagli del tipo di intaglio (non in scala).

Figura 4: dettaglio dell'albero A3 e relative quote (non in scala)

Figura 5: caratteristiche del difetto presente nell'albero A3 e relativo fattore di forma

Appendice 1

Dimensionamento a fatica

(c)

Figura A1: fattori di concentrazione delle tensioni (Collins 1981).

• Fattore di intaglio a fatica, K_f :

$$K_f = 1 + q \cdot (K_t - 1)$$

• Fattore di sensibilità all'intaglio:

$$q = \frac{1}{1 + \sqrt{\frac{\rho}{r}}}$$

r: raggio di gola dell'intaglio.

Figura A2: parametro $\sqrt{
ho}$ in funzione della tensione di snervamento Rp0.2.

Equazione di Goodman: $\frac{\sigma_a}{\sigma_{D-1}} + \frac{\sigma_m}{\sigma_R} = 1$, con σ_a tensione alterna, σ_m tensione media, σ_R tensione di rottura e σ_{D-1} limite di fatica.

Diagramma di Goodman Smith: regioni di validità e relative equazioni (con σ_s tensione di snervamento, σ_R tensione di rottura, σ_m tensione media, σ_N resistenza a fatica a N numero di cicli).

Regione	Campo di validità di σ_m	Equazione di collasso						
а	$-\sigma_{s} \leq \sigma_{m} \leq \sigma_{N} - \sigma_{s}$	$\sigma_{\rm max} - 2\sigma_{\rm m} \ge \sigma_{\rm s}$						
b	$\sigma_{N} - \sigma_{s} \leq \sigma_{m} \leq 0$	$\sigma_{\max} - \sigma_m \ge \sigma_N$						
с	$0 \le \sigma_{\rm m} \le \frac{\sigma_{\rm s} - \sigma_{\rm N}}{1 - \sigma_{\rm N}/\sigma_{\rm R}}$	$\sigma_{\max} - \sigma_{m} \left(\frac{\sigma_{R} - \sigma_{N}}{\sigma_{R}} \right) \geq \sigma_{N}$						
d	$\frac{\sigma_{s} - \sigma_{N}}{1 - \sigma_{N} / \sigma_{R}} \leq \sigma_{m} \leq \sigma_{s}$	$\sigma_{\max} \ge \sigma_s$						

Tabella A1: regioni e relative equazioni nel diagramma di Goodman-Smith

Ruote dentate

Formula di Lewis: $\sigma_L = \frac{W \cdot Y_L}{b_{eff} \cdot m_n}$, con $b_{eff} = \frac{b}{\cos(\beta)}$ (*b* larghezza di fascia), Y_L fattore di forma, m_n modulo normale e $W = \frac{F_t}{\cos(\beta)}$ (F_t : forza tangenziale scambiata durante l'ingranamento), raggio primitivo $r = \frac{z \cdot m_n}{2 \cdot \cos(\beta)}$.

Numero di denti virtuale: $z_{vn} = \frac{z}{(\cos(\beta))^3}$.

Forza assiale scambiata dalle ruote a denti elicoidali $F_a = F_t \cdot \tan(\beta)$;

Forza radiale scambiata dalle ruote a denti elicoidali $F_r = F_t \cdot \frac{\tan(\alpha_n)}{\cos(\beta)}$; (α_n : angolo di pressione normale).

Contatto Hertziano, ruote a denti dritti: $\sigma_H = 0.417 \cdot \sqrt{\frac{F_t \cdot E}{b \cdot \cos(\alpha) \cdot \sin(\alpha)} \cdot \frac{r_1 + r_2}{r_1 \cdot r_2}}$

 $\sigma_H \leq \sigma_0$, con $\sigma_0 = 2.5 \cdot HB$

Moduli unificati: 1; 1.25; 1.5; 2; 2.5; 3; 4; 5, 6; 8; 10; 12; 16; 20

zn		Fattore di forma Y _L in funzione del coefficiente di spostamento x														-					
z _{vn}	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4
7												2.84									
8											2.98	2.69	2.47								
9											2.84	2.6	2.4	2.22							
10										2.99	2.73	2.52	2.34	2.18							
11									3.15	2.87	2.65	2.46	2.3	2.16	2.05						
12									3.03	2.79	2.58	2.41	2.27	2.14	2.04						
13									2.93	2.72	2.53	2.38	2.24	2.12	2.03	1.96					
14							3.36	3.1	2.86	2.66	2.48	2.34	2.22	2.11	2.03	1.95					
15							3.25	3.01	2.79	2.6	2.44	2.31	2.2	2.1	2.02	1.95	1.89				
16						3.45	3.16	2.95	2.74	2.56	2.42	2.29	2.18	2.09	2.02	1.95	1.89				
17						3.35	3.09	2.88	2.69	2.53	2.39	2.27	2.17	2.08	2.01	1.95	1.89	1.85			
18					3.53	3.26	3.02	2.82	2.65	2.5	2.37	2.26	2.16	2.08	2.01	1.95	1.9	1.86			
19				3.72	3.44	3.2	2.96	2.78	2.61	2.47	2.35	2.24	2.15	2.07	2.01	1.95	1.9	1.87	1.83		
20				3.62	3.35	3.12	2.91	2.74	2.58	2.45	2.33	2.23	2.14	2.07	2.01	1.95	1.9	1.87	1.84		
21				3.53	3.28	3.07	2.87	2.7	2.55	2.43	2.32	2.22	2.14	2.06	2.01	1.95	1.91	1.87	1.84	1.82	
22				3.45	3.2	3.01	2.83	2.67	2.52	2.41	2.3	2.21	2.13	2.06	2	1.95	1.91	1.88	1.85	1.83	
23			3.64	3.38	3.15	2.96	2.8	2.64	2.5	2.39	2.29	2.2	2.12	2.06	2	1.95	1.91	1.88	1.85	1.83	1.82
24			3.55	3.3	3.1	2.92	2.75	2.61	2.48	2.37	2.28	2.19	2.12	2.06	2	1.95	1.91	1.88	1.86	1.84	1.83
25		3.73	3.45	3.25	3.05	2.88	2.72	2.58	2.46	2.36	2.27	2.19	2.12	2.05	2	1.95	1.92	1.88	1.86	1.84	1.83
30	3.61	3.35	3.18	3.01	2.85	2.72	2.6	2.48	2.38	2.3	2.22	2.16	2.1	2.04	2	1.96	1.93	1.9	1.88	1.86	1.85
40	3.15	3	2.86	2.75	2.63	2.54	2.45	2.37	2.3	2.24	2.18	2.13	2.08	2.04	2.01	1.97	1.95	1.93	1.91	1.9	1.89
50	2.9	2.78	2.68	2.59	2.5	2.43	2.36	2.31	2.25	2.2	2.15	2.11	2.07	2.03	2.02	1.98	1.97	1.94	1.93	1.92	1.91
60	2.75	2.65	2.57	2.5	2.42	2.37	2.32	2.25	2.22	2.17	2.13	2.1	2.08	2.04	2.02	1.99	1.98	1.96	1.94	1.94	1.93
100	2.46	2.4	2.35	2.32	2.26	2.24	2.21	2.17	2.15	2.12	2.1	2.08	2.06	2.04	2.03	2.01	2	1.99	1.98	1.98	1.97
200	2.27	2.24	2.21	2.19	2.17	2.15	2.14	2.12	2.1	2.1	2.1	2.07	2.05	2.04	2.04	2.02	2.02	2.01	1.98	2	2
400	2.17	2.15	2.14	2.13	2.12	2.11	2.1	2.09	2.08	2.08	2.08	2.07	2.06	2.06	2.05	2.04	2.04	2.04	2.03	2.03	2.03
¥	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07

Figura A3: Fattore di forma Y_L per le ruote dentate