

Skills and

MATERIALS SCIENCE AND TECHNOLOGY

ASI - Development of nanomaterials and devices for the direct storage of light-energy

Funded By	A.S.I AGENZIA SPAZIALE ITALIANA [P.iva/CF:03638121008]
Supervisor	GATTI TERESA - teresa.gatti@polito.it
	RUBINO ANDREA - andrearubino250302@gmail.com
Contact	KRIEGEL ILKA - ilka.kriegel@polito.it
Context of the	In this PhD project, the target will be to develop crystalline nanomaterials in
research	the form of colloids to be casted into thin-film architectures capable of
activity	absorbing light-energy, generating separated charges and store them.
	The doctoral project will have three main objectives:
Objectives	Design and synthesis of nanomaterials undergoing a photo-charging effect;
	2) Development of the photo-storage electrodes;
	3) Development of complete devices and microdevices for photo-energy
	storage.
	The target technology will offer a solution where light absorption, charge separation and storage will be combined in the same set of materials along
	with the ability to store and transfer more delocalized charges after light
	absorption. The devices will be built around photo-storage electrodes based
	on colloidal nanocrystals of doped non-critical metal oxides/chalcogenides/halides.
	The technology will be particularly suitable for autonomous solar energy
	conversion and storage systems. The first device design will find similarity to
	electrolytic-type supercapacitors in a sandwich structure but with the
	advantage of exploiting in situ charging with light. Specific electrode capacitance, stability, energy and power density, and cycleability after
	photocharging will be extracted and related to the state of the art of
	supercapacitor devices. The values ¿¿relating to the photon conversion
	efficiency will be further discussed. The activities carried out during this project will range from fundamental
	research activities to technology transfer towards a proof-of-concept tested
	in a laboratory environment. It will be necessary to test a number of different
	material systems and their deposition from solution into functional electrodes,
	defining experiments that allow to validate their performance by defining specific key parameters.
	apadina naj paramotoron

- Advanced chemical synthesis and characterization

competencies for the development of the activity

- Physical chemistryElectrochemistrySolution-processing methods for thin films