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Context of the
research
activity

In many engineering fields, the use of finite element methods (FEM) has
become unavoidable to reduce the sim-to-real gap, a necessary condition
for the development of Digital Twins that can lower design and testing costs.
However, the high computational effort has made such High-Fidelity models
unusable in real-time monitoring, estimation and control applications. In the
recent scientific and industrial world, simulation data are used to generate
"light" surrogate models of physical systems through the exclusive use of AI
and statistical methods. However, these methods suffer from data shortage,
over-fitting and poor generalization ability. The proposed research will
hybridize machine learning technologies with physical models, increasing the
robustness of surrogate models, allowing us to mitigate these issues.

Order reduction (OR) in finite element methods (FEMs) refers to techniques
that simplify high-order problems into lower-order ones, making them more
computationally efficient while maintaining acceptable accuracy. This process
is crucial for solving complex problems in engineering and physics, where
high-order systems can be computationally expensive to solve directly.

In this PhD project, some classical OR approaches will be first reviewed.
These can be summarised as follows:
- Static Condensation. This technique involves reducing the size of the
system of equations by eliminating certain degrees of freedom (DOFs)
associated with internal nodes of the elements. This is typically done for
higher-order elements where internal DOFs can be condensed out, leaving
only the boundary DOFs to be solved in the global system.
- Proper Orthogonal Decomposition: It involves capturing the dominant
modes of the system by decomposing it into orthogonal basis functions using
singular value decomposition.
- Reduced Basis Methods: These methods construct a reduced basis from a
set of high-fidelity solutions and project the original high-dimensional problem
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onto this reduced basis.
- Balanced Truncation: It balances the controllability and observability
Gramians of the system and truncates the less important states.
- H-P Adaptivity: This technique combines the concepts of h-refinement
(mesh refinement) and p-refinement (increasing the polynomial order of the
basis functions) to achieve higher accuracy with fewer elements. By
selectively refining the mesh or increasing the polynomial order where
needed, the computational cost can be reduced while maintaining accuracy.
- Galerkin Projection: It involves projecting the high-dimensional system onto
a lower-dimensional subspace. The choice of the subspace basis functions
is crucial and can be derived from various methods such as POD,
eigenfunctions, or other orthogonal functions.
- Multigrid methods: They solve the problem on a hierarchy of grids, from fine
to coarse. The solution on the coarse grid is used to correct the solution on
the finer grids, effectively reducing the computational effort by capturing the
long-wavelength components of the solution on the coarser grids.

The research activity will then move to non-traditional OR approaches,
based on artificial intelligence (AI). AI and, in particular, Machine learning (ML)
methods have shown a great potential in enhancing FEM by providing new
tools for model reduction, improving accuracy, speeding up simulations, and
automating tasks. The methods that will be considered during the PhD
project include the following ones:
- Surrogate Modeling: Surrogate models, or metamodels, approximate the
behavior of complex FEM simulations with simpler, computationally efficient
models. 
- OR using ML: Machine learning can enhance traditional model order
reduction techniques.
- Data-Driven FEM: ML techniques can directly leverage data to build or
augment FEM models, e.g. using Physics-Informed Neural Networks,
Generative Adversarial Networks.
- Parameter Identification and Inverse Problems: ML can be used to solve
inverse problems where the goal is to identify model parameters that best fit
the observed data.
- Mesh Generation and Adaptation: ML can improve mesh generation and
adaptation processes, crucial for FEM accuracy and efficiency.

The goal of this PhD project is to hybridize machine learning technologies
with known physical models, increasing the robustness of surrogate models,
mitigating the relevant problems of ML techniques like data shortage, over-
fitting and poor generalization ability. This will be achieved through intelligent
parameterization of the system of interest, and the use of Reduced Order
Modelling (ROM) techniques to optimize repetitive simulations. This
technology would disrupt various engineering and natural science fields.
Applications of interest, in fact, will include modeling and control of
collaborative soft-robots in precision agriculture, as well as demonstrating the
goodness of the techniques developed in the analysis and reduction of
complex systems affected by high unpredictability, such as simulation of
biological systems, Computational Fluid Dynamics (CFD) in meteorology and
prediction of anomalous weather events, CFD in the automotive field.

Skills and
competencies
for the
development of
the activity

Dynamic system theory; Automatic control; convex and nonlinear
optimization; data analysis; data fusion; machine learning; fluid automation;
multi-physics FEM; simulation of complex systems; Matlab/Simulink.




