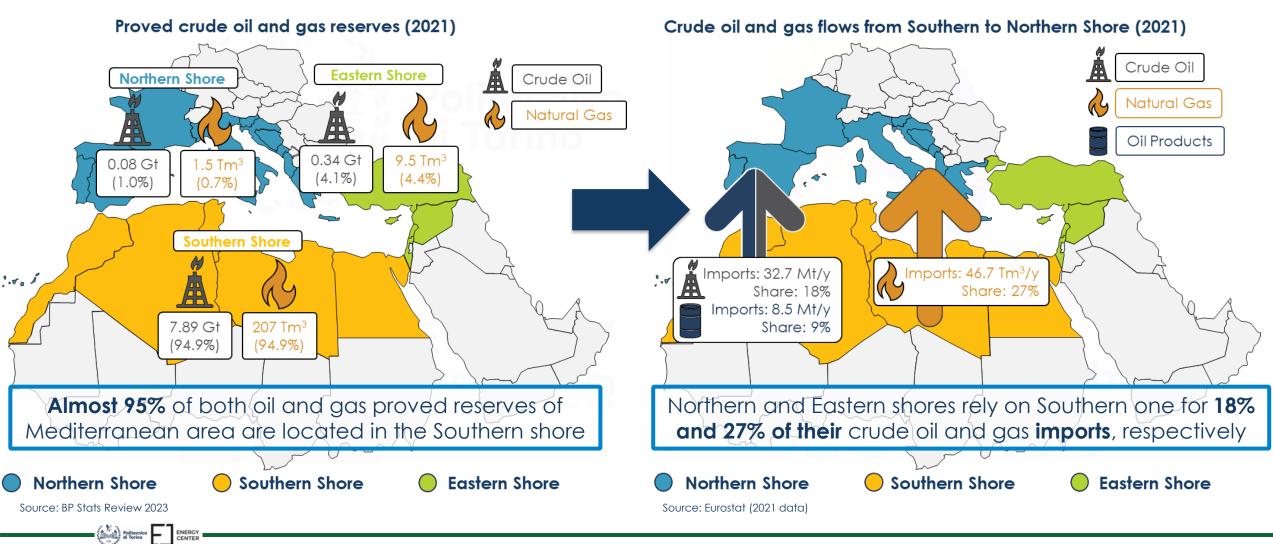
INTESA non SANPAOLO

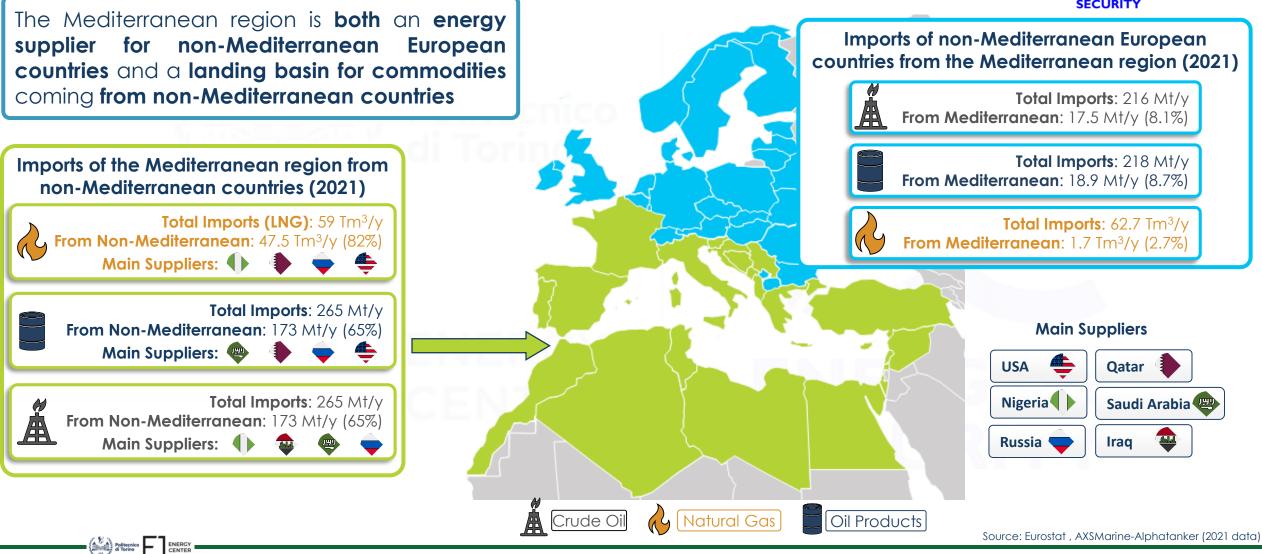
Presentazione del

MED & Italian Energy Report 2023

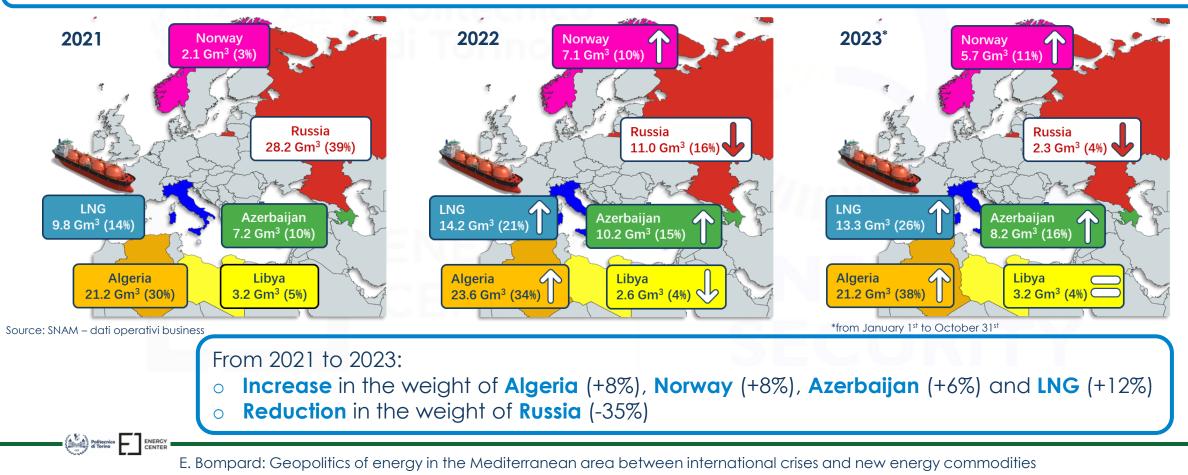
Geopolitica dell'Energia nel Mediterraneo tra crisi internazionali e nuove commodity energetiche

CONFERENZA STAMPA | 6 dicembre 2023

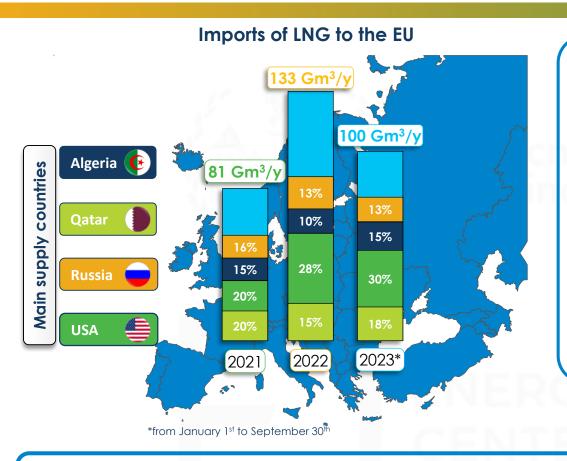

ETTORE BOMPARD, Direttore Scientifico ESL@ Energy Center, Politecnico di Torino


The uneven allocation of fossil resources and flows

Energy commodities from and across the Mediterranean



Strengthening the «black dialogue»: the Italian case



Algeria replaced Russia as the main gas supplier to Italy: in October 2022, Algerian imports through the Transmed pipeline >40% of the total, while Russian ones from TAG less than 1%

The crisis further strengthened the "black dialogue" across the Mediterranean

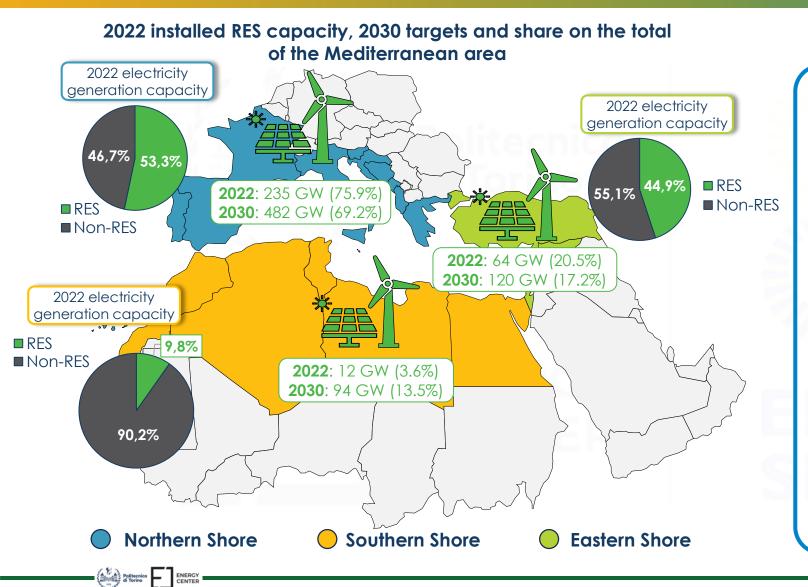
The role of LNG as «game changer»

Politecnico di Torino ENERCI CENTE

PROS:

High flexibility, diversification and the possibility of increasing quickly the overall import capacity \rightarrow positive for energy security

CONS:

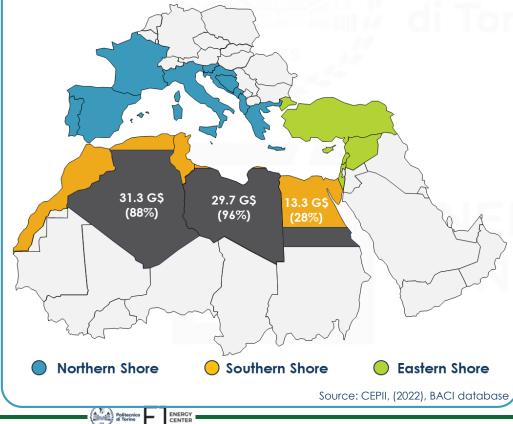

lower **affordability** w.r.t. natural gas, due to its **higher costs** and **market competition** phenomena, especially with Asian markets

Possible evolution towards a balance between long-term (to reduce exposure to price volatilities) and short-term spot (to allow for supply flexibility) LNG contracts

- In the EU, the import of LNG increased from 81 Gm³/y in 2021 to 133 Gm³/y in 2022 (+64%)
- Increasing role of U.S. in EU supply: 30 Gm³ (30%) in 2023, followed by Qatar (18 Gm³) and Algeria (16 Gm³)
- **EU import of Russian LNG** (mainly by **Belgium**, **Spain** and **France**) = 13 Gm³ (13%), with stable/slightly growing trend

Source: AXSMarine - Alphatanker

The needed transition towards renewables


- RES development in the 3 Mediterranean shores show large differences
- In 2022, out of 309 GW of RES installed capacity, 76% was in the Northern shore, 18% in Türkiye, and only 3.6% in the Southern shore
- To match their national targets, Mediterranean countries must sharply increase the rate of RES penetration
- While EU countries can benefit from consolidated regulatory frameworks and technical knowledge, for the other Mediterranean countries is still difficult to prioritize sustainability, also due to internal political instability and/or ongoing conflicts

Sources: IRENA, National Energy Climate Plans (NECPs), country-specific national plans

Energy & Economics: some open issues in the Mediterranean

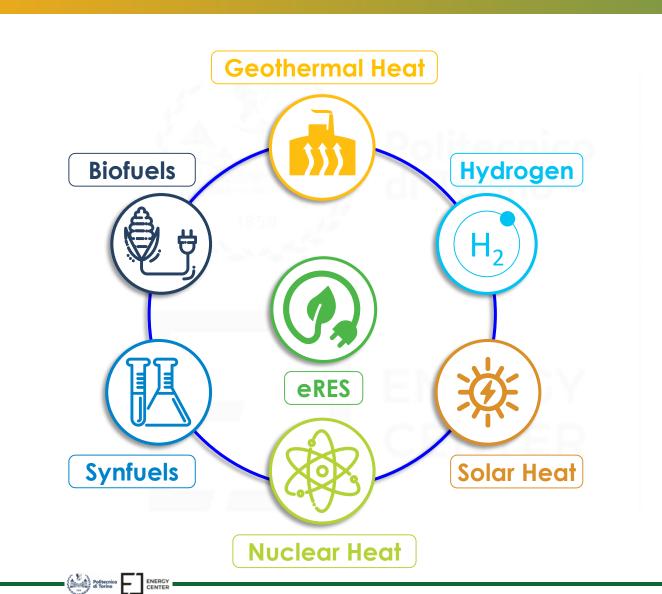
The transition is heavily tackled by the presence of 2 rentier states (Algeria and Libya), whose economies are almost completely relying on hydrocarbons export

Economic value of hydrocarbons export from Algeria, Libya and Egypt in 2021, and share on the total value of exports

ENERGY_{lab} SECURITY

- Energy transition requires large investments in infrastructures, especially in Southern shore (to exploit the large renewable potential), <u>BUT</u> avoiding a sort of "energy neo-colonialism"
- In 2021, 84.5% of the overall public investments in RES in the Mediterranean region (3.5 G\$/y) was concentrated in 3 countries of Northern shore: Spain (38.7%), France (36.0%) and Italy (9.9%)
- These investments are affected by several factors:
 - National: Difficulty in defining coherent and solid policies and in balancing sustainability, security and equity priorities (e.g. a central aspect affecting energy investment policies is the impact of energy prices on inflation)
 - Regional: lack of convergence among policies of the various countries; misalignment of standards and technological choices
 → long term barriers to joint developments.
 - International: negative influences on prices due to turbulences on global markets; unavoidable incidence on prices, costs, financial decisions, access to technologies, etc. due to global conflicts (e.g. Russia-Ukraine war)

Technologies for the energy transition: some comparative example


Politecnico di Torino

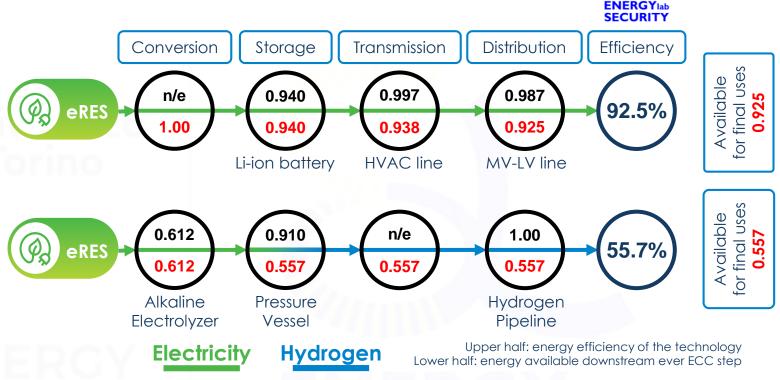
MAIN ELECTRICITY TECHNOLOGIES FOR THE TRANSITION					MAIN HYDROGEN TECHNOLOGIES FOR THE TRANSITION						
Generation						Generation					
Input	Technology	TRL	Cost [\$/kW]	Efficiency	Inp	out	Technology	TRL	Cost [\$/kW]	Efficiency	
Solar irradiance	PV: crystalline silicon	10	810 - 1120	0.17 - 0.23		(Alkaline electrolyser	9	500 - 1400	0.58 - 0.70	
	PV: multi-junction	9	4850 - 8240	0.39 - 0.47	Electri	icity 🛛	Proton Exchange Membrane electrol.	9	1100 - 1800	0.50 - 0.83	
	Floating PV	8	~ 860	0.17 - 0.23			Solid Oxide electrolyser	8	2800 - 5600	up to 0.84	
Water	Hydro Power Plants	11	2650 - 3900	0.40 - 0.50			Storage				
	Tidal stream & tidal range	9	150 - 800	~ 0.80	Тур	be	Technology	TRL	Cost [\$/kg _{H2}]	Efficiency	
Wind	Onshore Wind Turbine	10	1590 – 1950	0.29 - 0.35			Pressure vessel	11	712 - 998	0. <mark>9</mark> 1	
	Seabed fixed offshore Wind Turbine	9	2600 - 372	0.45 - 0.51	Physic	al 🛛	Liquid hydrogen tank	9	1905	0 <mark>.</mark> 71	
	Floating offshore Wind Turbine	8	2936 - 3289	0.45 - 0.51			Salt cavern	10	0.6	0. <mark></mark> 98	
Geoth. heat	Thermal power plant	11	3851 - 10959	0.12 - 0.18		Transmission & Distribution					
	Storage				Туре		Technology	TRL	Cost[\$/kg _{H2}]	Efficiency	
Туре	Technology	TRL	Cost [\$/kWh]	Efficiency	Open	-sea	Ammonia tanker ships	11	1.2	0.90	
Mechanical	Pumped Hydro Storage	11	10 – 100	0.70 - 0.84	Captiv	ve	Hydrogen pipeline	9	1.5	~1.00	
	Flywheel Energy Storage	9	1500 - 6000	0.70 - 0.93							
	Compressed Air Energy Storage	8	50 - 80	0.70 - 0.80		Curre	urrently multi-junctions PV cells have an efficiency ouble w.r.t. crystalline silicon ones, but the needed				
Electro-	Li-ion batteries	10	245 - 620	0.92 - 0.96							
chemical	Redox Flow Batteries	9	315 - 1680	~ 0.75							
Conversion						investment cost can be up to 8 times					
Commodity	Technology	TRL	Cost [\$/kW]	Efficiency							
Hydrogen	Solid Oxide Fuel Cells	9	3000 - 4000	0.45 - 0.50	T	The conversion of hydrogen in electricity through fuel					
	Molten Carbonate Fuel Cell	9	4000 - 6000	0.45 - 0.52		cells h	hydrogen has relatively low efficiency (~50%) with				
Transmission & Distribution						associated relevant investment costs					
Туре	Technology	TRL	Cost [M€/km]	Efficiency		12200					
Transmission	High-voltage Direct Current	11	~3.5	~0.97		The Solid Oxide electrolysers have higher efficiency w.r.t.					
	Ultra High-voltage Alternate Current	11	~3.1	0.93 - 0.94	J T						
TRL scale (ref. IEA): 11 : Proof of stability reached; 10 : Integration needed at scale; 9 : Commercial operation in relevant environment; 8 : First of a kind commercial						he tro	ne traditional ones (ALK, PEM), but a still low level of naturity and an investment cost up to 4 times				

Source: ESL@energycenter elaboration based on IEA and IRENA data

The need for a Multicommodity energy system

- Electricity from renewables is expected to assume the central role in the future energy mix and in building a new "green" dialogue
- However, electricity cannot completely decarbonise by itself the Mediterranean energy systems, due to "hard-to-abate" final uses (e.g., production of high temperature process heat in industry and long-distance maritime and aviation transport)

 Need for a synergy between electricity and other commodities, like green hydrogen (produced through water electrolysis by means of electricity from RES), alternative fuels, geothermal, solar thermal and nuclear heat


Energy Commodity Chains (ECCs) as a tool to compare alternative pathways

 ECCs are defined as the set of processes that energy commodities undergo along their path to final uses, from being harnessed from primary energy sources

 The same final use can be fed by more than one commodity, as well as being provided by different technologies

 ECCs are a tool to quantitatively evaluate equivalent but alternative energy pathways, and rank them basing on a set of numerical metrics

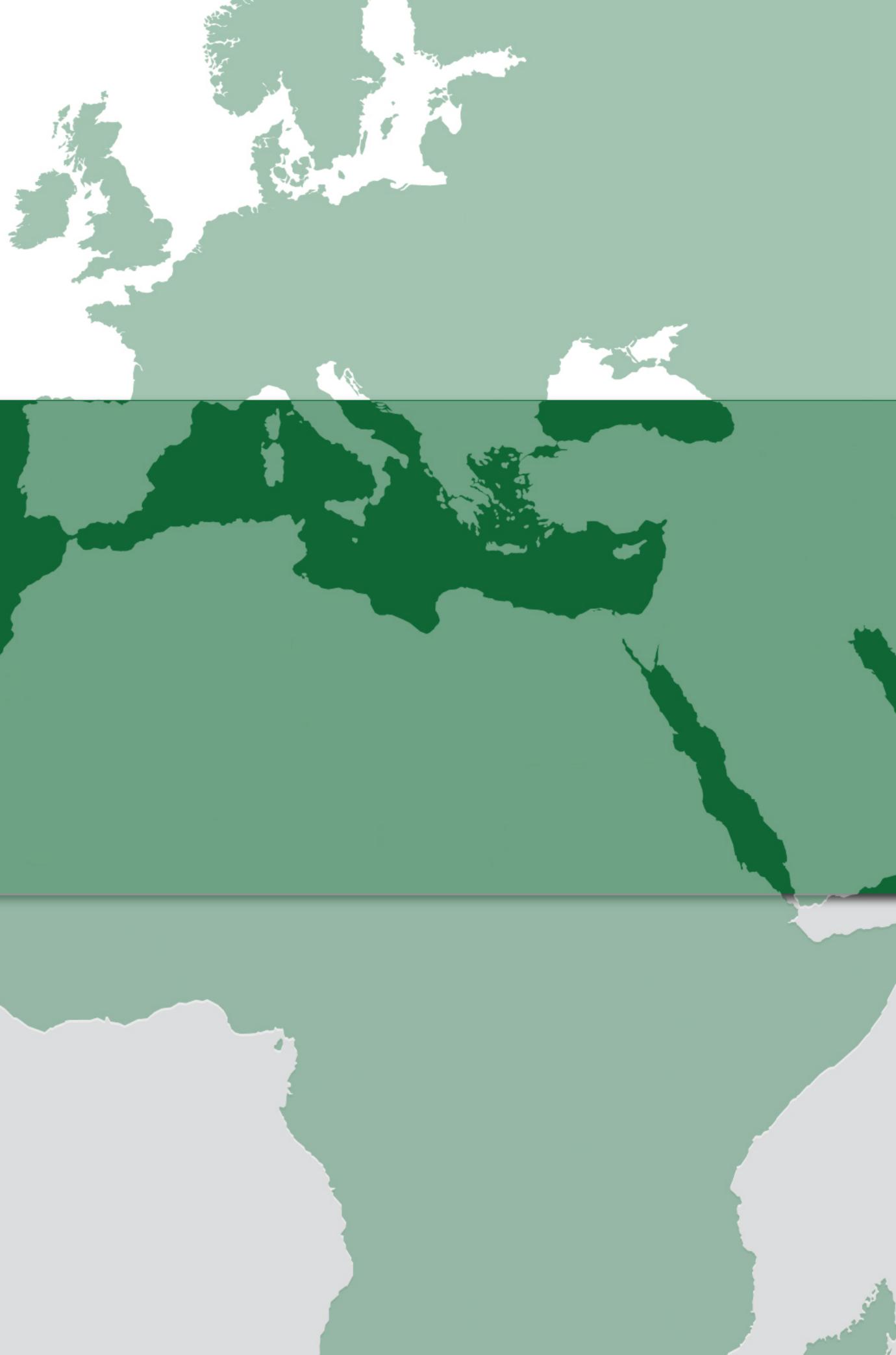
> Politecnico ENERGY di Torino

• Electricity is by far the most energy-efficient choice, with overall energy efficiencies even above 90%

- Hydrogen suffers from the relatively low conversion efficiency of electrolysis process (40% less available energy)
- The need to decarbonize must inevitably take into account the massive infrastructural and financial effort required to deploy commodities alternative to electricity, but energy-inefficient

INTESA non SANPAOLO

Grazie per l'attenzione



Politecnico di Torino

ENERGY CENTER

