

COMPUTER AND CONTROL ENGINEERING

DAUIN - REASE: REsilient computing Architecture in the Space quantum communication Era

Funded By	DAUIN - Progetti ricerca MIUR e altri ministeri					
Supervisor	STERPONE LUCA - luca.sterpone@polito.it					
Contact	STERPONE LUCA - luca.sterpone@polito.it					
Context of the	Quantum Key Distribution (QKD) is a leading technology of Quantum Communication (QC) since it allows to realize a secrecy protocol, safe and resilient to any external attack. Recently, QKD transmitters have been					
research	successfully tested on CubeSat, enabling QCs for satellite.					

	Cluster computation nodes based on radiation hardened self-reconfigurable Field Programmable Gate Arrays (FPGAs) will provide the optimal computational platform without introducing overhead in terms of performance such as data rate, throughput, memories interface access rate, when applying Radiation-Hardening Assurance (RHA) techniques at the cluster level.
	Simulation-based radiation particle interaction with matter based on fully integrated particle physics Monte Carlo tools will provide a prototype implementation compliant with the Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) radiation environment, necessary to improve the physical geometry of the cluster embedded within a satellite. Moreover, it will measure the criticality and sensitive position and study the fine cluster topology structure.
Objectives	A QKD communication data acquisition system and online data analysis will provide the monitoring systems integrated with the REASE computational architecture to provide the necessary measurement feedback performed during radiation beam testing using protons, heavy ions, and ultra-energetic heavy ions.
	A Dedicated Quantum Communication application to continuously sustain the transmission of new random data and analysis will be developed, implemented, and tested to provide the necessary feedback for robust and real-time quantum communication testbed.

REASE team includes experts in robust design techniques for figurable architectures, quantum key distribution algorithms and mentation techniques for FPGA, radiation effects modeling on satellite cal structure, and radiation beam testing campaigns. The proposed ct will take advantage of outstanding and promising results achieved by EASE proponents in previous and ongoing projects.	
--	--

Skills and								
competencies for the development of the activity	Design Micropro	capabilities ocessors	on	FPGA	devices,	Knowledge	of	Embedded