

ENERGETICS

MUR DM 117/Newcleo - Development of a subchannel code for full-core thermal-hydraulic analysis of lead-cooled fast reactors

Funded By	NEWCLEO S.R.L. [P.iva/CF:12517780016] MINISTERO DELL'UNIVERSITA' E DELLA RICERCA [P.iva/CF:97429780584] Politecnico di TORINO [P.iva/CF:00518460019]
Supervisor	BONIFETTO ROBERTO - roberto.bonifetto@polito.it
Contact	

Context of the	Code developme	nt in support of	core de	esign					
research activity	Progetto finanz E14D230019500	ato nell'ambito 04	del	PNRR	-	DM	117/2023	-	CUP

	The design of Lead-cooled Fast Reactors (LFRs) currently under development at newcleo is a multidisciplinary task, dealing with many deeply interconnected physical and engineering parameters, thus resulting in a multiphysics coupled problem. This coupled problem can be logically subdivided into separate physical problems, with Thermo-Mechanics (TM), Thermal-Hydraulics (TH) and NEutronics (NE) as the three most relevant physics involved. Each physical problem is supported by purposely developed Design-Oriented Codes (DOCs) where a compromise between runtime performance and physical and numerical accuracy is necessary for routine engineering applications. In particular, the engineers require the most accurate results from the fastest core calculations possible to assess reactor design and safety, and this becomes possible only developing specialized models with a clearly delimited application domain. The TH design is initially conducted at the fuel element level by means of DOCs based on the Sub-Channel (SC) method, such as ANTEO+ for
	undeformed bundles and EFIALTE for deformed bundles (the latter is currently under development within the H2020 PASCAL project). Moving to the full core analysis, a first approximation can be obtained by running different standalone ANTEO+ calculations for the assemblies composing the
Objectives	core. A more accurate calculation should account for the inter-SA heat transfer by self-consistently solving the TH problem within each SA and within the InterWrapper (IW) region
	A literature review pointed out that available codes for the full core TH

	analysis of LFRs are either too complex to be useful in the design phase (COBRA-WC and NETFLOW) or too simplified (SE2-ANL). This motivates the development of a new DOC solving the whole-core TH problem. A first step towards the development of a full core SC code was represented by TIFONE, a code for the W flow and heat transfer, which has been recently developed and preliminary validated at ENEA Bologna within a contract with Politecnico di Torino. The proposed work consists in the design, development and preliminary validation of a TH code based on the SC method for the full core analysis of an LFR. The code design shall comply with specific requirements to be set at the beginning of the activity, and follow rigorous software quality assurance guidelines. The design shall be thoroughly described in a Software Design and Implementation Document (SDID) describing the governing equations, solution methods, data flow diagrams and pseudocode. The code development shall be carried out using the most recent Fortran 2018 standard, and take advantage of modern programming practices, aiming at maximizing the code execution speed and overall performance.
Skills and	

competencies	Fundamentals in Numerical Analysis, Computational Fluid Dynamics and
for the	Thermal-hydraulics.
development of	Computer skills (already present or willing to learn): LATEX, Fortran, Python.
the activity	