

ELECTRICAL, ELECTRONICS AND COMMUNICATIONS ENGINEERING

Novel architectures of silicon-based tandem solar cells

	partimento DET
Supervisor CA	APPELLUTI FEDERICA - federica.cappelluti@polito.it
Contact	
Context of the research activity	Tith achievable efficiency above 40%, silicon-based tandem solar cells are e most promising technology for the future terrestrial photovoltaics market. The research activity will focus on the development and engineering of a ew multi-terminal tandem cell architecture that borrows the elementary ructure of a classic electronic device, the bipolar transistor, to achieve a mple monolithic device whose energy yield is robust to real field conditions.
Objectives Tau eff on ce (or arc mo lil/A co lov Re be pro tole PV eff In de bip Th ap Th (st Re	andem or multi-junction solar cells are a consolidated approach to high ficiency photovoltaics. They consist of different bandgap cells, stacked one in each other, to harvest the sun spectrum more efficiently than a single-gap ell. One strategy to achieve high energy-yield despite spectral fluctuations in earth) or radiation damage (in space) is to adopt multi-terminal chitectures, where the sub-cells are operated independently, instead of the ore traditional series-connected two-terminal configuration. V semiconductor multi-junction cells are the gold standard for space and oncentration applications, whilst several paths to tandems on silicon and w-cost thin-film materials are studied for terrestrial use. ecently, a new type of PV based on organometal halide perovskite (PVK) ecame the most efficient among thin film technologies, owing to the optimal operties of the PVK such as high absorbance, ambipolar transport, defect lerance, low temperature processing, chemical and band tunability. VK can be combined with silicon to realize tandem solar cells with high ficiency. this PhD project, the candidate will be involved in research activities evoted to develop PVK/silicon tandem solar cells that use the three-terminal polar transistor architecture. the candidate will study these devices with physics-based simulation oproaches including electromagnetics and transport. the activity will be carried out in the framework of the PRIN project CLAIRE tarting in Fall 2023), recently funded by the Ministry of University and esearch (MUR).

Fundamentals of light-matter interaction and semiconductor devices;

for the
development of
the activity