

BIOENGINEERING AND MEDICAL-SURGICAL SCIENCES

Ateneo - Design of experimental in vitro models for testing nanotherapies

Funded By	Politecnico di TORINO [P.iva/CF:00518460019]
Supervisor	CIARDELLI GIANLUCA - gianluca.ciardelli@polito.it
Contact	MATTU CLARA - clara.mattu@polito.it TONDA TURO CHIARA - chiara.tondaturo@polito.it
Context of the research activity	Integrating biology with novel engineering technologies and advanced materials is a key strategy for developing breakthrough approaches to solve unmet clinical needs and to respond to the societal need for more efficient treatments with low ethical and environmental impact. In this contest, in vitro experimental models are starting to be recognized as a powerful tool for advancing in pathologies understanding and for testing the efficiency of new therapies.
	In vitro experimental platforms (i.e. 3D in vitro models and Organ-on-Chip - OoC) combine the features of the experimental organ models with physiological or pathological stimuli and flow conditions to recapitulate the complex human physiology in vitro, with the ultimate goal of reducing and refining animal experiments. So far, this breakthrough technology is not fully exploited, since most models fail to model the complexity of organs by mimicking the interplay between the different cell phenotypes found in vivo. For in vitro tissue modelling, the proper design of 3D matrixes that provide the structural and mechanical support to cell homing, growth and organization is a key aspect to stimulate and control the formation of a new functional tissue as well as to guide the differentiation of stem cells. By mimicking nature, the optimal 3D scaffolds should finely replicate in vitro the physico-chemical and mechanical properties as well as the porous structure of the extracellular matrix (ECM) of the native tissue, at different degrees of aging, in healthy or pathological conditions. This PhD programme will aim to the design of advanced in vitro models recapitulating the architecture and composition of physiological organs including also the key elements and actors of physiological processes, such as the vasculature and the immune system. Advanced models are a powerful tool to improve our knowledge on pathologies, furthermore they are an alternative to in vivo models for testing and design effective therapies to

	treat uncurable diseases, such as cancers and neurodegenerative diseases.
Objectives	The Ph.D. student will be responsible for the processing of the biomaterials into 3D constructs via additive manufacturing techniques, electrospinning and micro/nano- particles for localized and prolonged drug release. More in detail, the Ph.D. student will develop and validate bioengineered tissue models and will test on them newly designed therapeutics. These final goals will be achieved through a bottom-up approach encompassing the following steps: (i) the design and characterization of new polymeric materials of natural, synthetic or bioartificial origin, with the aim to create a library of different compositions with a wide range of physico-chemical properties (e.g. mechanical properties, degradation kinetics), with the potential to meet the properties of different tissues of the human body; (ii) the microfabrication of the optimized polymeric biomaterials via advanced fabrication technologies (e.g. melt- and solution- electrospinning, bioprinting, fused deposition modeling) into 3D scaffolds that in vitro recapitulate targeted human tissues at different stages of ageing and/or pathology progression; (iii) the surface or bulk functionalization of the designed constructs with proteins or peptide sequences to enhance their capability to mimic the native environment from a biochemical point of view; (iv) the validation of the designed bioengineered tissue models from a structural, mechanical and functional point of view; (v) the design and characterization of polymeric micro/nano particles encapsulating drugs for targeted and sustained release of their payload in the developed in vitro models for testing new therapeutic approaches with the potential to answer unmet clinical challenges.
	We are looking for talented and motivated candidates, preferably with a
Skills and competencies for the development of the activity	Master Degree in Biomedical Engineering and with previous experience in the fields of biomaterials, nanotechnology, nanomedicine and tissue engineering. In detail, the optimal candidate should have the following skills: - direct experience on in vitro cell experiments with biomaterials; - knowledge of methods for nanoparticle preparation and polymer hydrogels - knowledge of rapid prototyping technologies.