

CHEMICAL ENGINEERING

MUR DM 118 - Nanoparticelle e modelli cellulari 3D e loro modellazione per lo studio di terapie avanzate di nanomedicina

Funded By

MINISTERO DELL'UNIVERSITA' E DELLA RICERCA [P.iva/CF:97429780584] Dipartimento DISAT

Supervisor

CAUDA VALENTINA ALICE - valentina.cauda@polito.it

Contact

Context of the research activity

La ricerca proposta ha come tematica la nanomedicina e in particolare il design di sistemi nanomedicali avanzati, basati su nanoparticelle ibride e metodi di attivazione con stimoli energetici, atti a valutare il trattamento terapeutico in ambito antitumorale su sistemi via via più complessi, da colture cellulari 2D e 3D, sistemi di organoidi bio-printed e organ-on-chip, fino a sistemi in vivo. L'ambito di applicazione è legato a adecarcinomi del colonretto.

Progetto finanziato nell'ambito del PNRR – DM 118/2023- Tematica PA - CUP E14D23001690006

Negli ultimi decenni la medicina ha ottenuto importanti avanzamenti nella cura delle patologie più gravi, quali il cancro, i disturbi neurodegenerativi e metabolici, nonché le malattie virali. Tuttavia, ulteriori sforzi sono necessari per rendere sempre più precoci e predittive le diagnosi offerte ai pazienti e sempre più precise, personalizzate ed efficaci le terapie proposte. La medicina personalizzata è quindi un bisogno da colmare ancora oggi e molte patologie altamente complesse e diverse da paziente a paziente, come il cancro, non possono che beneficiare di ulteriori avanzamenti scientifici basati sull'utilizzo di nanosistemi altamente ingegnerizzati e multifunzionali. In questo campo della nanomedicina, sono fondamentali competenze multidisciplinari, che uniscano competenze ingegneristiche e di chimica-fisica ad approcci biologici e biomedicali di ultima generazione. Nell'ambito del Dottorato di Ricerca in Ingegneria Chimica, questa borsa di dottorato si propone di affrontare la sfida del design di nanoparticelle multifunzionali e teranositche, con metodiche che prevedano la loro formulazione combinando materiali allo stato solido, quali nanocristalli semiconduttori, con rivestimenti polimerici e a base di biomolecole quali proteine e fosfolipidi. Le attività di ricerca spazieranno dalla sintesi e preparazione di tali nanomateriali ibridi e multifunzionali alla loro completa caratterizzazione chimico-fisica, le loro proprietà non convenzionali, gli aspetti relativi alla loro bio-stabilità e biodegradazione in ambiente biologico. Infine, verranno valutate in ambiente

biologico le proprietà di tali nanomateriali per effettuare terapie avanzate in

Objectives

presenza di uno stimolo energetico (campi magnetici, stimolazione acustica ultrasonora). Il tutto verrà realizzato direttamente su colture di cellule tumorali del colon retto in vitro e rispettiva controparte sana, valutando dapprima monolayer di cellule in 2D, successivamente sferoidi e tumoroidi in 3D, microfluidici per organ-on-chip е colture complesse immunocompetenti. Sarà inoltre possibile svolgere esperimenti in vivo su xenograft murini grazie a periodi di collaborazione con altri enti pubblici italiani e stranieri. Si rimarca in particolare che nei tre anni di percorso di dottorato è previsto un periodo all'estero di minimo 6 massimo 18 mesi in cui la/il candidato/a potranno svolgere una parte sperimentale complementare alle attività presso il Politecnico e completare la loro formazione scientifica e professionale. La destinazione sarà da scegliere a cura della/del candidata/o in accordo con il supervisore.

Skills and competencies for the development of the activity

Esperienza nella manipolazione ed eventuale preparazione di micronanostrutture, nanoparticelle e tecniche di 3D printing.

Esperienza nella manipolazione di liposomi o vescicole extracellulari, rivestimenti lipidici o polimerici;

Conoscenza ed esperienza nelle tecniche di caratterizzazione di nanomateriali, quali: Dynamic Light Scattering (DLS) e misure del potenziale zeta, spettroscopia UV-visibile e/o infrarossa, microscopia a fluorescenza ottica e tecniche di colorazione di nanoparticelle e sistemi biologici cellulari, analisi di tracciamento di nanoparticelle (NTA).

Tecniche opzionali che forniscono un valore aggiunto: Esperienza nella preparazione, quale sintesi chimica per via umida, di nanoparticelle inorganiche, preferibilmente ossidi metallici; Esperienza nella funzionalizzazione chimica di sistemi di ossidi metallici; Diffrattometria a raggi X (XRD), Spettroscopia di risonanza paramagnetica elettronica (EPR), competenze in tecniche di coltura cellulare, misure di vitalità cellulare e citometria a flusso, sistemi di detection avanzata di segnali luminosi, sistemi di irraggiamento con ultrasuoni

Buona/ Ottima conoscenza della lingua inglese nello scritto e parlato