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Motivation

Network games: strategic interactions over interconnected systems
Coordinating agents: spread of social norms and innovations
Anti-coordinating agents: traffic congestion, crowd dispersion and
division of labor
Irregular network topology and population heterogeneity are not sufficient
to cause nonexistence of Nash equilibria; coexistence of coordinating
and anti-coordinating agents must play a role (Ramazi et al, 2016)
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Preliminaries

Game: (V ,A, {ui}i∈V)
1 Agent set: V
2 Action set: A
3 Utilities: ui : AV → R, i ∈ V

Best response function:

Bi (x−i ) = arg max
xi∈A

ui (xi , x−i )

Nash equilibrium:

x∗i ∈ Bi (x∗−i ) i ∈ V

Network game: (V ,A, {ui}i∈V)
Graph: G = (V, E ,W )

Utilities depend only on their
action and their neighbors’ actions

Potential game: ui (yi , x−i )− ui (xi , x−i ) = Φ(yi , x−i )− Φ(xi , x−i )

→ Existence of Nash equilibrium guaranteed
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Problem definition

Heterogeneous network coordination anti-coordination game

ui(xi , x−i) =

{∑
j∈VWijxixj − αixi i coordinating agent

−
∑

j∈VWijxixj + αixi i anti-coordinating agent

Undirected G = (V , E ,W )

Binary A = {−1,+1}
Node weights {αi}i∈V , αi ∈ R

Anti-coordinating agents Va
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Best response function

Coordinating agent i ∈ Vc

Bi(x−i) = sign(w+
i (x)− ri wi)

Anti-coordinating agent i ∈ Va

Bi(x−i) = −sign(w+
i (x)− ri wi)

Thresholds: ri =
1
2 +

αi

2wi

wi =
∑

j∈VWij (degree), w+
i (x) =

∑
j∈VWij

xj+1
2
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Network coordination game

Utilities: uci (xi , x−i ) =
∑
j∈V

Wijxixj − αixi

Symmetric two-player game, undirected graph
→ The network game is potential
Homogeneous thresholds → Potential game (straightforward)
Heterogeneous thresholds?

Proposition

If undirected graph, then potential function

Φc(x) =
1
2

∑
i ,j∈V

Wijxixj −
∑
i∈V

αixi

Existence of Nash equilibria guaranteed
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Network coordination game

Consensus always Nash equilibrium S ⊆ V r-cohesive if
∑

j∈S Wij

wi
≥ r for all

i ∈ S.

Theorem (Morris, 2000)

x = 1S − 1V\S Nash equilibrium ⇔ S is r -cohesive
V \ S is (1− r)-cohesive
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Network coordination game

Characterization NE complete graph

x∗ ∈ N ⇔ z∗ = F

(
n

n − 1
(z∗ − ε)

)
, ∀ε ∈

(
0,

1
n

]
where F (z) := 1

n
{i ∈ Vc | ri ≤ z} and z∗ := 1

n
{i ∈ V | x∗i = +1}.
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Network anti-coordination game

Utilities: uai (xi , x−i ) = −uci (xi , x−i ) = −
∑
j∈V

Wijxixj + αixi

Characterization of Nash equilibria not trivial
Homogeneous thresholds → Potential game (straightforward)
Heterogeneous thresholds?

Proposition

If undirected graph, then potential function

Φa(x) = −Φc(x) = −1
2

∑
i ,j∈V

Wijxixj +
∑
i∈V

αixi

Existence of Nash equilibria guaranteed over any possible undirected
network
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Network anti-coordination game

Characterization NE complete graph

x∗ ∈ N ⇔ G

(
n

n − 1
(z∗ − ε)

)
≥ z∗ ≥ G

(
n

n − 1
z∗
)
, ∀ε ∈

(
1
n
,
2
n

]
where G(z) = 1-F(z).
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Network coordination anti-coordination game

Proposition

One edge between a coordinating agent and an anti-coordinating
agent
→ not a potential game

The discoordination game admits no Nash equilibria
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Main result

Undirected G
Va anti-coordinating agents
Vc := V \ Va coordinating agents
Thresholds ri =

1
2 +

αi

2wi
= r for all i ∈ V

Theorem (Sufficient condition for NE)

Set of coordinating agents Vc r-cohesive (or (1− r)-cohesive)
→ at least one Nash equilibrium

Recall: S ⊆ V r-cohesive if
∑

j∈S Wij

wi
≥ r for all i ∈ S.
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Outline of the proof

Vc is 1
2-cohesive
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Outline of the proof

(+1)-stubborn agents
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Outline of the proof

Network anti-coordination game with stubborn agents
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Outline of the proof

Heterogeneous network anti-coordination game
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Outline of the proof

Heterogeneous network anti-coordination game → Potential game
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Outline of the proof

Nash equilibrium
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Nash equilibria on complete graph

Proposition (Sufficient and necessary for NE on the complete graph)

x∗ ∈ N ⇔ z∗, z∗c , z∗a satisfy:


z∗c = Fc

(
n

n−1(z∗ − εc)
)

Ga

(
n

n−1(z∗ − εa)
)
≥ z∗a ≥ Ga

(
n

n−1z
∗
)

z∗ = αz∗c + (1− α)z∗a

for every εc ∈ (0, 1
n ] and εa ∈ ( 1

n ,
2
n ].

Fraction of agents playing +1 in Vc and Va

z∗c :=
1
nc
{i ∈ Vc | x∗i = +1}, z∗a :=

1
na
{i ∈ Va | x∗i = +1}

Fraction of coordinating agents

α :=
nc
n
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Nash equilibria on complete graph

Coexistence of coordinating and anti-coordinating agents (Necessary condition)

x∗ ∈ N ⇒ Hα

(
n

n − 1
(z∗ − 1

n
)

)
≥ z∗ ≥ Hα

(
n

n − 1
z∗
)

where Hα(z) := αFc(z) + (1− α)Ga(z)

ri = 1
2 , ∀i ∈ V: α >

1
2 → Vc is 1

2 -cohesive
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)
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(
n

n − 1
z∗
)

where Hα(z) := αFc(z) + (1− α)Ga(z)

ri =
1
2 , ∀i ∈ V : α ≤

1
2 → NE if n odd
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Conclusions

Results
We observed that the heterogeneous network coordination game and the
heterogeneous network anti-coordination game are potential games

Even if the potential property is formally lost, we provide a sufficient condition for
the existence of Nash equilibria of the heterogeneous network coordination
anti-coordination game

Characterization of Nash equilibria of the heterogeneous network coordination
anti-coordination game over the complete graph

Open questions
The condition is sufficient but not necessary. Necessary conditions?

We studied the static case. Let us consider the asynchronous best response
dynamics. If the conditions of the theorem are satisfied, does the dynamics
converge to a Nash equilibrium?
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