CONVERGENCE PROPERTIES OF SOCIAL HEGSELMANN-KRAUSE DYNAMICS

Rohit Parasnis, Massimo Franceschetti, Behrouz Touri Department of Electrical and Computer Engineering, University of California San Diego

For more details, see arXiv:1909.03485

Hegselmann-Krause Dynamics [Hegselmann, Krause 2002]

- n agents with initial opinions in \mathbb{R}
- State at time $k = x[k] = [x_1[k] \ x_2[k] \ \dots \ x_n[k]]^T \in \mathbb{R}^n$ for $k = 0, 1, 2, \dots$
- Confidence bound *R*:

$$N_i[k] = \{ j \in [n] : |x_i[k] - x_j[k]| \le R \}$$

Communication graph $G_c[k]$

• Update rule:

$$x_{i}[k+1] = \frac{\sum_{j \in N_{i}[k]} x_{j}[k]}{|N_{i}[k]|}$$

State-dependent due to feedback between the state and the communication graph

If two agents have similar opinions, they necessarily influence each other.

What if two like-minded agents never meet?

Social Hegselmann-Krause Model [Fortunato 2005]

- Incorporate a physical connectivity graph G_{ph} that connects only those pairs of agents that can contact each other
- Properties of G_{ph}:
 - Static graph independent of agents' opinions (simplifying assumption)
 - Connected graph

Thus, two agents influence each other iff

- 1. their opinions are similar
- 2. they are adjacent in G_{ph}

Influence graph = $G_{ph} \cap G_c[k]$

How long does a social HK system take to reach the steady state? (The original HK system takes $O(n^3)$ steps, [Mohajer, Touri 2013])

Definitions

- Steady State: if initial state = x_0 , then $x_{\infty}(x_0) \coloneqq \lim_{k \to \infty} x[k]$ (always exists, [Lorenz 2005])
- Termination Time: time taken to reach the steady state $T(G_{ph}; x_0) \coloneqq \inf\{k \in \mathbb{N}: x[k] = x_{\infty}(x_0)\}$
- Maximum Termination Time:

$$T^*(G_{ph}) \coloneqq \sup_{x_0 \in \mathbb{R}^n} T(G_{ph}; x_0)$$

[Parasnis, Franceschetti, Touri. IEEE-CDC 2018.]

Consequently, $T^*(G_{ph}) = \infty$ if G_{ph} is not complete.

How fast does a social HK system approach the steady state?

• ϵ -Convergence time: time taken to enter the ϵ -neighborhood of $x_{\infty}(x_0)$: $k_{\epsilon}(G_{ph}; x_0) \coloneqq \inf \left\{ N \in \mathbb{N} : \left| |x[k] - x_{\infty}(x_0)| \right|_2 < \epsilon \ \forall \ k \ge N \right\}$

Maximum ε-convergence time:

$$k_{\epsilon}^*(G_{ph}) \coloneqq \sup_{x_0 \in \mathbb{R}^n} k_{\epsilon}(G_{ph}; x_0)$$

$$= \sup_{||x_0||_{\infty} \le nR} k_{\epsilon}(G_{ph}; x_0)$$

Theorem 2 (Lower Bound): Given an incomplete G_{ph} and an $\epsilon > 0$,

$$\kappa_{\epsilon}^{*}(G_{ph}) > \frac{\log\left(\frac{R}{\epsilon\sqrt{2}}\right)}{\left|\log\left(1-2\phi(G_{ph})\right)\right|}.$$

Theorem 3 (Conditional Upper Bound): Let x[0] be such that the influence graph, $G_{ph} \cap G_c[k]$ is connected and constant. Then the system achieves ϵ -convergence in $O(n^2 d(G_{ph}) \log n)$ steps.

[[]Parasnis, Franceschetti, Touri. IEEE-CDC 2018.]

<u>Fact</u>: For every $n \ge 4$ and $\epsilon < R/2$, there exists a physical connectivity graph G_{ph} on *n* vertices for which $k_{\epsilon}^*(G_{ph}) = \infty$.

Theorem: Complete *r*-Partite Graphs Do Not Exhibit A.S.C.

<u>Theorem</u>: Let $\epsilon > 0$ and $r \in \mathbb{N}$. Let G_{ph} be a complete *r*-partite graph. Then $k_{\epsilon}^*(G_{ph}) < \infty$.

[To appear in IEEE-CDC 2019.]

 \exists partition $\{V_1, \dots, V_r\}$ of $V(G_{ph})$ such that $(i, j) \in E(G_{ph}) \Leftrightarrow i \in V_x, j \in V_y$ for some $x \neq y$

A Turan Graph

Parts of Different Sizes

A lemma characterizing the eigenvectors of the normalized adjacency matrices $(D^{-1}A_{adj})$ and hence those of the normalized Laplacian matrices $(D^{-\frac{1}{2}}A_{adj}D^{\frac{1}{2}})$ of complete *r*-partite graphs

Example: 3 eigenvectors of the **complete tripartite graph** with parts of sizes 1, 2 and 3

	Original HK	Social HK
G _{ph}	Complete	Arbitrary
Maximum Termination Time	<i>0</i> (<i>n</i> ³) [Mohajer, Touri 2013]	∞ for incomplete G_{ph}
Maximum ϵ -Convergence Time	0(n ³)	 Possibly ∞ finite for complete <i>r</i>-partite graphs

Thus, HK dynamics over complete graphs are an anomaly!

Future direction: Which other classes of graphs satisfy $k_{\epsilon}^*(G_{ph}) < \infty$?

THANK YOU! QUESTIONS?

For more details, see On the Convergence Properties of Social Hegselmann-Krause Dynamics (arXiv:1909.03485)