

GAME THEORETICAL INFERENCE OF HUMAN BEHAVIOUR IN SOCIAL NETWORKS

[N. Pagan & F. Dörfler, "Game theoretical inference of human behaviour in social networks". Nature Communications (forthcoming).]

Workshop on "Network Dynamics in the Social, Economic, and Financial Sciences"

Torino, 07.11.2019

NICOLÒ PAGAN FLORIAN DÖRFLER

OBSERVATIONS

Actors decide with whom they want to interact.

OBSERVATIONS

Actors decide with whom they want to interact.

Network positions provide benefits to the actors.

= Forbes

3,853 views | Sep 11, 2017, 10:09am

Using Social Networks To Advance Your Career

Adi Gaskell Contributor ()

Shutterstock

"It's not what you know, it's who you know" is one of those phrases

Social Influence

The more people we are connected to, the more we can influence them.

Social Influence

The more people we are connected to, the more we can influence them.

Social Support

The more our friends' friends are our friends, the safer we feel.

Social Influence

The more people we are connected to, the more we can influence them.

Social Support

The more our friends' friends are our friends, the safer we feel.

Brokerage

The more we are on the path between people, the more we can control.

Social Influence

The more people we are connected to, the more we can influence them.

Social Support

The more our friends' friends are our friends, the safer we feel.

Brokerage

The more we are on the path between people, the more we can control.

Degree Centrality

Clustering coefficient

Betwenness Centrality

Directed weighted network \mathcal{G} with $\mathcal{N} = \{1, ..., N\}$ agents.

 $a_{ij} \in [0,1]$ quantifies the importance of the friendship among *i*

and *j* from *i*'s point of view.

Directed weighted network \mathcal{G} with $\mathcal{N} = \{1, ..., N\}$ agents.

 $a_{ij} \in [0,1]$ quantifies the importance of the friendship among i

and *j* from *i*'s point of view.

A typical action of agent *i* is:

 $a_i = [a_{i1}, \dots, a_{i,i-1}, a_{i,i+1}, \dots, a_{iN}] \in \mathscr{A} = [0,1]^{N-1},$

Directed weighted network \mathcal{G} with $\mathcal{N} = \{1, ..., N\}$ agents.

 $a_{ij} \in [0,1]$ quantifies the importance of the friendship among i

and j from i's point of view.

A typical action of agent *i* is:

 $a_i = [a_{i1}, \dots, a_{i,i-1}, a_{i,i+1}, \dots, a_{iN}] \in \mathscr{A} = [0,1]^{N-1},$

Every agent i is endowed with a payoff function V_i and is looking for

$$a_i^{\star} \in \arg\max_{a_i \in \mathscr{A}} V_i(a_i, \mathbf{a_{-i}})$$

Parametric payoff function:

 $V_i(a_i, \mathbf{a}_{-i}, \theta_i) = \theta_i^T \text{benefit}(a_i, \mathbf{a}_{-i}) - \text{cost}(a_i),$

where $\theta_i \in \Theta$, are the **individual** parameters relative to the different contributions, e.g., social influence, social support, brokerage.

Social Influence

Social Support

NASH EQUILIBRIUM

Definition.

The network \mathscr{G}^{\star} is a Nash Equilibrium if for all agents *i*: $V_{i}\left(a_{i},\mathbf{a}_{-\mathbf{i}}^{\star}|\theta_{i}\right) \leq V_{i}\left(a_{i}^{\star},\mathbf{a}_{-\mathbf{i}}^{\star}|\theta_{i}\right), \forall a_{i} \in \mathscr{A}$

N $\mathsf{Game}\left(\mathscr{N}, V_i, \mathscr{A}\right)$ \mathscr{G}^{\star} V_i \mathcal{A}

NASH EQUILIBRIUM

Definition.

The network \mathcal{G}^{\star} is a Nash Equilibrium if for all agents *i*:

 $\forall i, a_i^{\star} \in$

STRATEGIC NETWORK FORMATION MODEL

Question: Given θ_i , which \mathcal{G}^{\star} is in equilibrium?

$$\arg\max_{a_i \in \mathscr{A}} V_i\left(a_i, \mathbf{a}_{-i}^{\star} \mid \theta_i\right)$$

SOCIAL NETWORK STRUCTURE $\mathscr{G}^{\star}\left(heta_{i} ight)$

STOCHASTIC ACTOR-ORIENTED MODELS

Question: Given \mathscr{G}^* , for which θ_i is \mathscr{G}^* in equilibrium?

SOCIAL NETWORK STRUCTURE $\mathscr{G}^{\star}\left(heta_{i} ight)$

GAME-THEORETICAL INFERENCE

 $\forall i, \theta_i^{\star} \text{ s.t. } V_i\left(a_i, \mathbf{a}_{-i}^{\star}, \theta_i^{\star}\right) \leq V_i\left(a_i^{\star}, \mathbf{a}_{-i}^{\star}, \theta_i^{\star}\right), \forall a_i \in \mathscr{A}$

Question: Given \mathscr{G}^{\star} , for which θ_i is \mathscr{G}^{\star} in equilibrium?

DETERMINE

 $\forall i, a_i^{\star} \in \arg\max_{a_i \in \mathscr{A}} V_i\left(a_i, \mathbf{a}_{-i}^{\star} | \theta_i\right)$

SOCIAL NETWORK STRUCTURE $\mathscr{G}^{\star}(\theta_i)$

GAME-THEORETICAL INFERENCE

 θ_i^{\star} providing the **most rational** explanation to NE

Question: Given \mathscr{G}^{\star} , for which θ_i is \mathscr{G}^{\star} in equilibrium?

DETERMINE

 $\forall i, a_i^{\star} \in \arg\max_{a_i \in \mathscr{A}} V_i \left(a_i, \mathbf{a}_{-i}^{\star} | \theta_i \right)$

SOCIAL NETWORK STRUCTURE $\mathscr{G}^{\star}(\theta_i)$

HOMOGENEOUS **RATIONAL AGENTS**

Assumption.

Individual preferences $\theta_i = \theta$, for all agents *i*, and fully rational behaviour.

For specific **network motifs**, analytical parametric necessary conditions can be derived through Variational Inequality. Sufficiency can also be established.

Confirm known results in Strategic Network Formation literature

IFF conditions, parameter space analysis, NE and Pairwise Nash Equilibrium results.

REAL WORLD NETWORKS?

INVERSE OPTIMIZATION PROBLEM

Error function.

 $e_i(a_i, \theta_i) := V_i\left(a_i, \theta_i \,|\, \mathbf{a}_{-i}^{\star}\right) - V_i\left(a_i^{\star}, \theta_i \,|\, \mathbf{a}_{-i}^{\star}\right)$

 $e_i^+(a_i, \theta_i) := \max\{0, e_i(a_i, \theta_i)\} > 0 \text{ corresponds}$ to a violation of the Nash equilibrium condition

Distance function.

$$d_i(\theta_i) := \left(\int_{\mathscr{A}} e_i^+(a_i, \theta_i)^2 da_i \right)^{1/2} = \|e_i^+(a_i, \theta_i)\|_{\mathscr{A}}$$

No violations: can be neglected

INVERSE OPTIMIZATION PROBLEM

Problem [Minimum NE-Distance Problem]. Given a network \mathscr{G}^{\star} of N agents, for all agents *i* find the vectors of preferences θ_i^{\star} such that

 $\theta_i^{\star} \in \arg\min_{\theta_i \in \Theta} d_i^2(\theta_i)$

Theore*m* [Convexity of the objective function].

Let $e_i(a_i, \theta_i) : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$ be a continuous function of $a_i \in \mathbb{R}^n$ and $\theta_i \in \mathbb{R}^p$, and linear in θ_i , and let \mathscr{A} be a compact subset of \mathbb{R}^n . Consider the squared distance function:

$$d_i^2(\theta_i) := \int_{\mathscr{A}} \left(\max\left\{ 0, \, e_i(a_i, \theta_i) \right\} \right)^2 dx = \|e_i^+(a_i, \theta_i)\|_{L_2(\mathscr{A})}^2$$

Then $d_i^2(\theta_i)$ is continuously differentiable, and its gradient reads as

$$\nabla_{\theta} d_i^2(\theta) = \int_{\mathscr{A}} 2 \nabla_{\theta_i} \left(e_i(a_i, \theta_i) \right) \max \left\{ 0, \, e_i(a_i, \theta_i) \right\} da_i \, .$$

Moreover, d_i^2 is convex.

INVERSE OPTIMIZATION PROBLEM - SOLUTION

First-order optimality condition

$$0 = \nabla_{\theta_i} \left(d_i^2(\theta_i) \right) = 2 \int_{\mathscr{A}} \nabla_{\theta_i} \left(e_i \right)$$

max operator within (N-1) - dimensional integral

 $e_i(a_i, \theta_i)) \max \{0, e_i(a_i, \theta_i)\} da_i.$

INVERSE OPTIMIZATION PROBLEM - SOLUTION

Search for an approximate solution. Consider a finite set of possible actions (samples)

Let $e_i^j(\theta_i) = e_i(a_i^j, \theta_i)$ and $e_i^{j,+}(\theta_i) = e_i^+(a_i^j, \theta_i)$ be the corresponding error and positive error at the samples.

Approximate the distance function as

 $\tilde{d}_i(\theta_i) :=$

Problem [Discrete Minimum NE-Distance Problem]. Given a network \mathscr{G}^{\star} of N agents, for all agents *i* find the vectors of preferences $\hat{\theta}_i$ such that

Same property of the original problem (Convexity)

$$\left\{a_i^j\right\}_{j=1}^{n_i} \subset \mathscr{A}$$

$$= \left(\sum_{j=1}^{n_i} \left(e_i^{j,+}(\theta_i)\right)^2\right)^{1/2} = \|\mathbf{e}_i^+\|_2$$

 $\hat{\theta}_i \in \arg\min_{\theta_i \in \Theta} \tilde{d}_i^2(\theta_i)$

INVERSE OPTIMIZATION PROBLEM - SOLUTION

Search for an approximate solution. Consider a finite set of possible actions (samples)

Let $e_i^j(\theta_i) = e_i(a_i^j, \theta_i)$ and $e_i^{j,+}(\theta_i) = e_i^+(a_i^j, \theta_i)$ be the corresponding error and positive error at the samples.

Approximate the distance function as

 $\tilde{d}_i(\theta_i) :=$

Problem [Discrete Minimum NE-Distance Problem]. Given a network \mathscr{G}^{\star} of N agents, for all agents *i* find the vectors of preferences $\hat{\theta}_i$ such that

Similar to Generalized Least Square Regression

$$\left\{a_i^j\right\}_{j=1}^{n_i} \subset \mathscr{A}$$

$$= \left(\sum_{j=1}^{n_i} \left(e_i^{j,+}(\theta_i)\right)^2\right)^{1/2} = \|\mathbf{e}_i^+\|_2$$

 $\hat{\theta}_i \in \arg\min_{\theta_i \in \Theta} \tilde{d}_i^2(\theta_i)$

RENAISSANCE **FLORENCE NETWORK**

Behaviour estimation of the Medici family

PIECE OF ART

Fig. "La nascita di Venere", 1482-1485, Sandro Botticelli. Galleria degli Uffizi, Firenze.

PREFERENTIAL **ATTACHMENT MODEL**

Nodes are introduced sequentially. Each newborn receives 2 incoming links from existing nodes (randomly selected, proportionally to the outdegree), and creates 2 outgoing ties to existing nodes (randomly selected, proportionally to the indegree).

N. Pagan & F. Dörfler, "Game theoretical inference of human behaviour in social networks". Nature Communications (forthcoming).

NICOLÒ PAGAN FLORIAN DÖRFLER

