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The Financial Network Model
Introduction

i j

External Sector

wij

wji

ci > 0 cj < 0

εi εj

xji

xij

ci − εi cj − εj

• wij inter-bank liability;
• ci > 0 positive money inflow;
• cj < 0 outside debt.

Everything is fine
In normal conditions, every bank i can meet its
total liability: wi =

∑
j
wij .
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The Financial Network Model
Introduction

i j

External Sector

wij

wji

ci > 0 cj < 0

εi εj

xji

xij

ci − εi cj − εj

• Shocks ε hit the network by reducing c;
• Nodes may default and not be able to pay their
liabilities (direct effect);
• Shocks propagate across the network because
of reduced payments (indirect effect).

Clearing Vectors
x is a set of consistent payments after the
shock:

x = Sw
0 (P ′x+ c− ε)

where (P )ij = wij

wi
and Sw

0 is a saturation:

w

w

0

Sw
0

• Notice that any solution is such that
x ∈ Lw

0 := {x ∈ Rn : 0 ≤ x ≤ w}
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Uniqueness of Clearing Vectors
Existence and Uniqueness of Clearing Vectors

• Existence of clearing vectors follows from Brower fixed point Theorem.
• One can prove that it always exist a maximal and a minimal solution x and x respectively.

In general however the solution will not be unique:

Example

Consider the network consisting of two nodes only depicted below with P =
[

1 0
0 1

]
, w =

[
1
1

]
and c =

[
0
0

]
.

1 2

1

1

It is immediate to check that any vector of the form x =
[
t
t

]
, t ∈ [0, 1] is a clearing vector.
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Uniqueness of Clearing Vectors
The Out-Connected Case

Theorem (Uniqueness for out-connected graphs)
Let P be an out-connected matrix, then the clearing vector is unique.

• We can partition any graph in a transient part T and trapping sets U . I.e. V = T ∪ (∪kUk);
• PT is out-connected =⇒ the solution xT is unique.

T U

• What about the solution on U? Notice that PU is stochastic and irreducible.
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Uniqueness of Clearing Vectors
The Stochastic Irreducible Case
Theorem (Uniqueness for the stochastic irreducible case)

Let P be an irreducible stochastic matrix; let π be its unique invariant probability measure and

ν = 1
2
∑
k≥0

(
I + P ′

2

)k

c. Then it holds:

1′c

Unique solution

min
k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}

6= 0

= 0
Multiple solutions

> 0

≤ 0

• In case we have multiple solutions, we have that:

X =
{
x = ν + απ : −min

k

{
νk

πk

}
≤ α ≤ min

k

{
wk − νk

πk

}}
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Uniqueness of Clearing Vectors
A geometrical Interpretation
When 1′c = 0, we have multiple solutions when the line H = {x ∈ Rn : x = ν + απ} intersects non
trivially the lattice Lw

0 .

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

x

x

H

Lw
0

(a) Multiple solutions (the red dots and segment).

min
k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
> 0

x3

x1

x2

6
4
2
0
−2
−4

4

2
2 0

40

H

Lw
0

x

(b) Unique solution (the red dot).

min
k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
≤ 0
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Uniqueness of Clearing Vectors
The General Case

The Out-Connected Case
Unique solution.

1

3

2

External Sector

The Stochastic-Irreducible Case
Uniqueness depends on c, i.e. on what is coming
from and going to the external environment.

1

3

2

External Sector

The General Case

4

6

51

3

2

External Sector

T
U

Input of U coming from T

• xT is unique;
• For every trapping set U , we use the Theorem;
• To do so, we also need to consider the input
coming from T : hU := cU + PUT xT
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Critical Transitions
The Dependence of Clearing Vectors on the Shock

Dependence of x on c

• The uniqueness ultimately depends on the input \ output vector c.
• There exists a set of critical vectors c∗ such that we have multiple solutions, namely:
M =

{
c ∈ Rn : 1′c = 0, min

k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}
> 0
}

What happens to the solutions when c approaches a critical c∗ ∈M ?
Let A = Rn\M be the set where the solution is unique. Then:
• The map c 7→ x(c) is continuous on A.
• One can prove that for every c∗ ∈M,

lim inf
c∈A

c→c∗

x(c) = x(c∗) , lim sup
c∈A

c→c∗

x(c) = x̄(c∗) .

• This means that the clearing vector undergoes a jump discontinuity at c∗.
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Critical Transitions
Critical Transitions and Jumps
Jump discontinuity as a financial breakdown
A jump discontinuity means that even a slight change in the asset/shock value c may lead to a catastrophic
aggregated loss and to sudden defaults of several nodes.

Loss function
• Consider shock ε that lowers the value of the external asset from c to c− ε;
• Loss function is: l = 1′(ε+ w − x)

Jump size of the loss function at c∗ ∈M

∆l(c∗) = lim inf
c∈A

c→c∗

l(c)− lim sup
c∈A

c→c∗

l(c) = 1
′ (x̄(c∗)− x(c∗)) = min

k

{
νk

πk

}
+ min

k

{
wk − νk

πk

}

Maximal norm of a jump discontinuity

max
c∈Rn

||x(c)− x(c)||pp =
(

min
k

wk

πk

)p

||π||p
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Critical Transitions
Critical Transitions and Jumps
Example

Consider the network below with P =

[ 0 0.75 0.25
0 0 1

0.3 0.7 0

]
and w =

[5
3
2

]
.

1

3

2

0.25 1

0.70.3

0.75

Consider an initial asset c = [5, 2, 2]′ and a total shock magnitude ε ∈ [0, 12] that hits all nodes uniformly, i.e.
c(ε) = c− ε[ 1

3 ,
1
3 ,

1
3 ]′. We expect a jump discontinuity when 1′c(ε) = 0 =⇒ ε = 9.

l(ε)

ε
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Results and Ongoing Research
Main Results and Future Goals

Main Results
• Sufficient and necessary condition for Uniqueness of clearing vectors;
• Systemic risk measures and existence of critical shocks;
• Structure of solutions with respect to the topological properties of the network.

Ongoing Research
• Optimal policies for risk reduction;
• Analytical results on particular topologies and random graphs;
• Continuous Model.
• Model extensions (fire sales, bankruptcy costs, cross holdings, etc...);
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Thank you!
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