

Systemic risk and network intervention

Luca Damonte luca.damonte@polito.it

Network Dynamics in the Social, Economic, and Financial sciences

POLITECNICO DI TORINO

Variables of interest

▶ $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network

Variables of interest

- ▶ $\mathcal{G} = (\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network
- $\blacktriangleright \eta$ in $\mathbb{R}^n \longrightarrow$ Shocks

Variables of interest

- $\blacktriangleright \ \mathcal{G} = (\mathcal{V}, \mathcal{E}) \longrightarrow \text{Directed network}$
- ▶ η in $\mathbb{R}^n \longrightarrow$ Shocks
- ► x in $\mathbb{R}^n \longrightarrow$ Agents' equilibrium state
- ► f(x) in $\mathbb{R} \longrightarrow$ Aggregate observable

Variables of interest

- $\blacktriangleright \ \mathcal{G} = (\mathcal{V}, \mathcal{E}) \longrightarrow \text{Directed network}$
- ▶ η in $\mathbb{R}^n \longrightarrow$ Shocks
- ► x in $\mathbb{R}^n \longrightarrow$ Agents' equilibrium state
- ► f(x) in $\mathbb{R} \longrightarrow$ Aggregate observable
- ▶ q in $\mathbb{R}^n \longrightarrow$ Protection

Formalization of the problem

- \bar{c} reference vector;
- η shock vector, a random vector $\mathbb{E}[\eta] = 0$ and $Cov(\eta) = \Omega$;
- Q = diag(q), q is the **protection** vector, $q_i \ge 1, \forall i$.

Optimal protection against shocks

We studied **effect of shocks and relative protections** in the equilibrium configuration given a budget constraint *C*:

$$\min_{q_i \ge 1, \|q\| \le C} \max_{\mathrm{Tr}(\Omega) \le 1} \sum_i \mathrm{Var}[x_i]. \tag{W}$$

It is particularly relevant to study also the sample mean

$$\min_{q_i \ge 1, \|q\| \le C} \max_{\operatorname{Tr}(\Omega) \le 1} \operatorname{Var}[n^{-1} \mathbb{1}' x].$$
(M)

Useful notation

- ▶ $L = (I DP)^{-1}(I D)$: interaction matrix, Leontief matrix, etc.
- $v = n^{-1}L'$ 1: Katz-Bonacich centrality vector
- ▶ $l_i = ||L_i||_2$: euclidean norm of L's columns

Application (I)

Our starting ideas: analysis of shocks on economic and production network [Acemoglu2010],[Acemoglu2012], and [Carvalho2014].

Production network model

$$x = \alpha P x + (1 - \alpha)c, \quad \alpha \in (0, 1)$$
$$y = \log(GDP) = n^{-1} \mathbb{1}' x$$

- The components of the vector *c* have the meaning of marginal benefits of the economic agents
- ► Micro shocks → macro fluctuations
- Var(y) is called aggregate volatility

Application (II)

We are given a set of players ${\mathcal V}$ whose utilities are given by

Coordination games and network quadratic games

$$u_i(x) = -rac{1}{2} \left[\sum_j W_{ij} (x_i - x_j)^2 +
ho_i (x_i - c_i)^2
ight]$$

Large literature in coordination games and quadratic network games [Ballester2016], [Galeotti2010],[Bramoulle2014],and [Galeotti2017].

- ► In the sociological models the vector *c* represents the **initial opinion** of the agents
- In the network intervention context it represents standalone marginal return

The dependence graph

The dependence graph

► Independent shocks → isolated nodes

The dependence graph

- ▶ Independent shocks → isolated nodes
- ► Correlated shocks → complete graph

Independent shocks

Proposition

Solution of max problem is

$$\max_{\|\sigma\|\leq 1}\sum_{i}(\sigma_i y_i/q_i)^2 = \max_{i}(y_i/q_i)^2$$

given by every $\sigma : \sigma_j = \begin{cases} k_j \in (0,1), & j \in K = \{j \in \mathcal{V} : (y_j/q_j)^2 = \|y/q\|_{\infty}^2 \} \\ 0, & j \notin K \end{cases}$ and such that $\sum_{j \in K} k_j^2 = 1$. Introduce the function:

$$f(\lambda) = \sum_{i=1}^{n} \max\left\{1, \left(y_i/\sqrt{\lambda}\right)\right\} \qquad \lim_{\lambda \to 0^+} f(\lambda) = +\infty, \quad f(y_1^2) = n \\ C \ge \sqrt{n} \Longrightarrow \lambda(C) := f^{-1}(C^2).$$

Let k(C) be the maximum index such that $y_{k(C)} > \lambda(C)^{1/2}$.

Introduce the function:

$$f(\lambda) = \sum_{i=1}^{n} \max\left\{1, \left(y_i/\sqrt{\lambda}\right)\right\} \qquad \lim_{\lambda \to 0^+} f(\lambda) = +\infty, \quad f(y_1^2) = n \\ C \ge \sqrt{n} \Longrightarrow \lambda(C) := f^{-1}(C^2).$$

Let k(C) be the maximum index such that $y_{k(C)} > \lambda(C)^{1/2}$.

The initial problem becomes

$$\min_{q_i \ge 1, \|q\| \le C} \max_i \left(y_i / q_i \right)^2.$$

Proposition

The optimum is

$$\lambda(C) = (C^2 - (n - k(C)))^{-1} \sum_{i}^{k(C)} y_i^2$$

and is reached by $q_i = \max\left\{1, y_i/\sqrt{\lambda(C)}\right\}, \, orall i$

Water filling

Initial example

	Difference between v and ℓ					
i	i	ν	l	q_{v}	q_ℓ	
	1	0.0476	0.0628	1.0000	1.0000	
	2	0.1473	0.1365	1.3359	1.2836	
	3	0.0949	0.0837	1.0000	1.0000	
4	4	0.0986	0.0939	1.0000	1.0000	
1	5	0.1183	0.1004	1.0725	1.0000	
6	6	0.0655	0.0663	1.0000	1.0000	
	7	0.0705	0.0748	1.0000	1.0000	
8	8	0.0758	0.0734	1.0000	1.0000	
	9	0.1138	0.1005	1.0321	1.0000	
	10	0.1061	0.1237	1.0000	1.1629	
	11	0.0606	0.0840	1.0000	1.0000	

Correlated shocks

 Ω full covariance matrix —> correlation between each pair of shocks

$$(W) \quad \min_{\substack{q_i \ge 1, \|q\| \le C \operatorname{Tr}(\Omega) \le 1}} \operatorname{Tr} \left(Q^{-1} \Omega Q^{-1} L' L \right)$$

(M)
$$\min_{\substack{q_i \ge 1, \|q\| \le C \operatorname{Tr}(\Omega) \le 1}} v' Q^{-1} \Omega Q^{-1} v.$$

Correlated shocks

 Ω full covariance matrix \longrightarrow correlation between each pair of shocks

$$(W) \quad \min_{\substack{q_i \ge 1, \|q\| \le C \operatorname{Tr}(\Omega) \le 1}} \operatorname{Tr} \left(Q^{-1} \Omega Q^{-1} L' L \right)$$

(M)
$$\min_{\substack{q_i \ge 1, \|q\| \le C \operatorname{Tr}(\Omega) \le 1}} v' Q^{-1} \Omega Q^{-1} v.$$

min-max for the arithmetic mean

$$f(\lambda) = \sum_{i=1}^{n} \max\left\{1, \left(\nu_i/\sqrt{\lambda}\right)^{1/2}\right\} \qquad \begin{array}{c} C \ge \sqrt{n} \Longrightarrow \lambda(C) := f^{-1}(C^2) \\ k(C) \text{ index such that } y_{k(C)} > \lambda(C)^{1/2}. \end{array}$$

Proposition

It holds

$$\min_{q_i \ge 1 \, \|q\| \le C} \sum_k \left(\frac{\nu_k}{q_k}\right)^2 = \sum_{k=1}^{k(C)} \nu_k \sqrt{\lambda(C)} + \sum_{k=k(C)+1}^n \nu_k^2$$

The optimum is reached by

$$q_k = \max\left\{1, \left(
u_k/\sqrt{\lambda(C)}
ight)^{1/2}
ight\}$$

min-max for the sum of variances?

$$\min_{q_i \ge 1, \|q\| \le C} \sigma_1 \left(Q^{-1} L' L Q^{-1} \right)$$

- ▶ is a quasi-convex problem (but it is not easy to get explicit solution)
- σ₁ (Q⁻¹L'LQ⁻¹) solves det(σ₁Q² − L'L) = 0 and it is known as the generalized eigenvalue of the pair (Q, L'L)
- ▶ simulations show that optimum *q* has 'water filling' structure

Conclusions

- Characterization of the min-max problem for an equilibrium configuration of the system
- ► Analysis of the uncorrelated and totally correlated shocks → the nature of the shock is fundamental
- Solutions for low budget present 'water filling' structure
- ▶ What does it happen for general dependence relation?

Thank you for the attention

POLITECNICO DI TORINO

Name footer, Title footer, 16/16