DISMA Scienze Matematiche G. L. Lagrange ECCELLENZA 2018•2022

Systemic risk and network intervention

Luca Damonte
luca.damonte@polito.it
Network Dynamics in the Social, Economic, and Financial sciences

POLITECNICO DI TORINO

Introductory example

Variables of interest

- $\mathcal{G}=(\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network

Introductory example

Variables of interest

- $\mathcal{G}=(\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network
- η in $\mathbb{R}^{n} \longrightarrow$ Shocks

Introductory example

Variables of interest

- $\mathcal{G}=(\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network
- η in $\mathbb{R}^{n} \longrightarrow$ Shocks
- x in $\mathbb{R}^{n} \longrightarrow$ Agents' equilibrium state
- $f(x)$ in $\mathbb{R} \longrightarrow$ Aggregate observable

Introductory example

Variables of interest

- $\mathcal{G}=(\mathcal{V}, \mathcal{E}) \longrightarrow$ Directed network
- η in $\mathbb{R}^{n} \longrightarrow$ Shocks
- x in $\mathbb{R}^{n} \longrightarrow$ Agents' equilibrium state
- $f(x)$ in $\mathbb{R} \longrightarrow$ Aggregate observable
- q in $\mathbb{R}^{n} \longrightarrow$ Protection

Formalization of the problem

Equilibria configuration

$$
\begin{equation*}
x=(I-D P)^{-1}(I-D) c \tag{1}
\end{equation*}
$$

P in $\mathbb{R}^{n \times n}$, s.t. $P \geq 0$ and $P \mathbb{H}=\mathbb{1}$
$O D$ in $\mathbb{R}^{n \times n}$, diagonal such that $0<D_{i i}<1$, $\forall i$.
c in $\mathbb{R}^{n} \longrightarrow c=\bar{c}+Q^{-1} \eta$ where

- \bar{c} reference vector;
- η shock vector, a random vector $\mathbb{E}[\eta]=0$ and $\operatorname{Cov}(\eta)=\Omega$;
- $Q=\operatorname{diag}(q), q$ is the protection vector, $q_{i} \geq 1, \forall i$.

Optimal protection against shocks

We studied effect of shocks and relative protections in the equilibrium configuration given a budget constraint C :

$$
\begin{equation*}
\min _{q_{i} \geq 1,\|q\| \leq C} \max _{\operatorname{Tr}(\Omega) \leq 1} \sum_{i} \operatorname{Var}\left[x_{i}\right] . \tag{W}
\end{equation*}
$$

It is particularly relevant to study also the sample mean

$$
\begin{equation*}
\min _{q_{i} \geq 1,\|q\| \leq C} \max _{\operatorname{Tr}(\Omega) \leq 1} \operatorname{Var}\left[n^{-1} \mathbb{1}^{\prime} x\right] . \tag{M}
\end{equation*}
$$

Useful notation

- $L=(I-D P)^{-1}(I-D)$: interaction matrix, Leontief matrix, etc.
- $v=n^{-1} L^{\prime} \mathbb{1}$: Katz-Bonacich centrality vector
- $\ell_{i}=\left\|L_{.}\right\|_{2}$: euclidean norm of L's columns

Application (I)

Our starting ideas: analysis of shocks on economic and production network [Acemoglu2010],[Acemoglu2012], and [Carvalho2014].

Production network model

$$
\begin{gathered}
x=\alpha P x+(1-\alpha) c, \quad \alpha \in(0,1) \\
y=\log (G D P)=n^{-1} \mathbb{1}^{\prime} x
\end{gathered}
$$

- The components of the vector c have the meaning of marginal benefits of the economic agents
- Micro shocks \longrightarrow macro fluctuations
- $\operatorname{Var}(y)$ is called aggregate volatility

Application (II)

We are given a set of players \mathcal{V} whose utilities are given by
Coordination games and network quadratic games

$$
u_{i}(x)=-\frac{1}{2}\left[\sum_{j} W_{i j}\left(x_{i}-x_{j}\right)^{2}+\rho_{i}\left(x_{i}-c_{i}\right)^{2}\right]
$$

Large literature in coordination games and quadratic network games [Ballester2016], [Galeotti2010],[Bramoulle2014], and [Galeotti2017].

- In the sociological models the vector c represents the initial opinion of the agents
- In the network intervention context it represents standalone marginal return

The dependence graph

The dependence graph

- Independent shocks \longrightarrow isolated nodes

The dependence graph

- Independent shocks \longrightarrow isolated nodes
- Correlated shocks \longrightarrow complete graph

Independent shocks

Consider y and assume $y_{1} \geq y_{2} \geq \ldots \geq y_{n}$

Proposition

Solution of max problem is

$$
\max _{\|\sigma\| \leq 1} \sum_{i}\left(\sigma_{i} y_{i} / q_{i}\right)^{2}=\max _{i}\left(y_{i} / q_{i}\right)^{2}
$$

given by every $\sigma: \sigma_{j}=\left\{\begin{array}{ll}k_{j} \in(0,1), & j \in K=\left\{j \in \mathcal{V}:\left(y_{j} / q_{j}\right)^{2}=\|y / q\|_{\infty}^{2}\right\} \\ 0, & j \notin K\end{array}\right.$, and such that $\sum_{j \in K} k_{j}^{2}=1$.

Introduce the function:

$$
f(\lambda)=\sum_{i=1}^{n} \max \left\{1,\left(y_{i} / \sqrt{\lambda}\right)\right\} \quad \begin{aligned}
& \lim _{\lambda \rightarrow 0^{+}} f(\lambda)=+\infty, \quad f\left(y_{1}^{2}\right)=n \\
& C \geq \sqrt{n} \Longrightarrow \lambda(C):=f^{-1}\left(C^{2}\right)
\end{aligned}
$$

Let $k(C)$ be the maximum index such that $y_{k(C)}>\lambda(C)^{1 / 2}$.

Introduce the function:

$$
f(\lambda)=\sum_{i=1}^{n} \max \left\{1,\left(y_{i} / \sqrt{\lambda}\right)\right\} \quad \begin{aligned}
& \lim _{\lambda \rightarrow 0^{+}} f(\lambda)=+\infty, \quad f\left(y_{1}^{2}\right)=n \\
& C \geq \sqrt{n} \Longrightarrow \lambda(C):=f^{-1}\left(C^{2}\right)
\end{aligned}
$$

Let $k(C)$ be the maximum index such that $y_{k(C)}>\lambda(C)^{1 / 2}$.
The initial problem becomes

$$
\min _{q_{i} \geq 1,\|q\| \leq C} \max _{i}\left(y_{i} / q_{i}\right)^{2}
$$

Proposition

The optimum is

$$
\lambda(C)=\left(C^{2}-(n-k(C))\right)^{-1} \sum_{i}^{k(C)} y_{i}^{2}
$$

and is reached by $\quad q_{i}=\max \left\{1, y_{i} / \sqrt{\lambda(C)}\right\}, \forall i$

Water filling

Initial example

$x=(1-\alpha)(I-\alpha P)^{-1} c$

$$
\alpha=0.8, n=11, C=\sqrt{n+1}
$$

Correlated shocks

Ω full covariance matrix \longrightarrow correlation between each pair of shocks

$$
\begin{array}{ll}
(W) & \min _{q_{i} \geq 1,\|q\| \leq C} \max _{\operatorname{Tr}(\Omega) \leq 1} \operatorname{Tr}\left(Q^{-1} \Omega Q^{-1} L^{\prime} L\right) \\
(M) & \min _{q_{i} \geq 1,\|q\| \leq C \operatorname{Tr}(\Omega) \leq 1} v^{\prime} Q^{-1} \Omega Q^{-1} v .
\end{array}
$$

Correlated shocks

Ω full covariance matrix \longrightarrow correlation between each pair of shocks

$$
\begin{array}{ll}
(W) & \min _{q_{i} \geq 1,\|q\| \leq C \operatorname{Tr}(\Omega) \leq 1} \operatorname{Tr}\left(Q^{-1} \Omega Q^{-1} L^{\prime} L\right) \\
(M) & \min _{q_{i} \geq 1,\|q\| \leq C \operatorname{Tr}(\Omega) \leq 1} v^{\prime} Q^{-1} \Omega Q^{-1} v .
\end{array}
$$

$$
\left\{\begin{array}{c}
\text { for a symmetric matrix } A \text { : } \\
\max _{\operatorname{Tr}(\Omega) \leq 1} \operatorname{Tr}(\Omega A)=\|A\|_{2} \\
\\
\Downarrow \\
(W) \quad \min _{q_{i} \geq 1,\|q\| \leq C} \sigma_{1}\left(Q^{-1} L^{\prime} L Q^{-1}\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \text { for every vector } x \text { : } \\
& \max _{\operatorname{Tr}(\Omega) \leq 1} x^{\prime} \Omega x=\|x\|^{2} \\
& \Downarrow \\
& (M) \quad \min _{q_{i} \geq 1,\|q\| \leq C} v^{\prime} Q^{-2} v
\end{aligned}
$$

min-max for the arithmetic mean

$f(\lambda)=\sum_{i=1}^{n} \max \left\{1,\left(v_{i} / \sqrt{\lambda}\right)^{1 / 2}\right\} \quad \begin{aligned} & C \geq \sqrt{n} \Longrightarrow \lambda(C):=f^{-1}\left(C^{2}\right) \\ & \\ & k(C) \text { index such that } y_{k(C)}>\lambda(C)^{1 / 2} .\end{aligned}$

Proposition

It holds

$$
\min _{q_{i} \geq 1\|q\| \leq C} \sum_{k}\left(\frac{v_{k}}{q_{k}}\right)^{2}=\sum_{k=1}^{k(C)} v_{k} \sqrt{\lambda(C)}+\sum_{k=k(C)+1}^{n} v_{k}^{2}
$$

The optimum is reached by

$$
q_{k}=\max \left\{1,\left(v_{k} / \sqrt{\lambda(C)}\right)^{1 / 2}\right\}
$$

min-max for the sum of variances?

$$
\min _{q_{i} \geq 1,\|q\| \leq C} \sigma_{1}\left(Q^{-1} L^{\prime} L Q^{-1}\right)
$$

- is a quasi-convex problem (but it is not easy to get explicit solution)
- $\sigma_{1}\left(Q^{-1} L^{\prime} L Q^{-1}\right)$ solves $\operatorname{det}\left(\sigma_{1} Q^{2}-L^{\prime} L\right)=0$ and it is known as the generalized eigenvalue of the pair $\left(Q, L^{\prime} L\right)$
- simulations show that optimum q has 'water filling' structure

Conclusions

- Characterization of the min-max problem for an equilibrium configuration of the system
- Analysis of the uncorrelated and totally correlated shocks \longrightarrow the nature of the shock is fundamental
- Solutions for low budget present 'water filling' structure
- What does it happen for general dependence relation?

\square

Thank you for the attention

POLITECNICO
DI TORINO

Name footer, Title footer, 16/16

