

Maria Castaldo

On a Centrality Maximization Game

Joint work with: Costanza Catalano Giacomo Como Fabio Fagnani

Workshop on Network Dynamics in the Social, Economic, and Financial Sciences

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
•	0	00000	000	00
Bonacich Centrality				

How to measure the **importance** π_i of a position?

$$\pi = \beta P' \pi + (1 - \beta)\eta,$$

where $\sum_{i} \eta_i = 1$.

Bonacich centrality

Applications: **visibility** of a webpage on the internet.

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	•	00000	000	00
Centrality Maximization	n Game			

$$\mathcal{T}(\mathcal{V},\beta,\eta,\mathbf{m}) = (\mathcal{V},\{\mathcal{A}_i\}_{i\in\mathcal{V}},\{u_i\}_{i\in\mathcal{V}})$$

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	•	00000	000	00
Centrality Maximization	Game			

$$\mathbf{T}(\mathcal{V},\beta,\eta,\mathbf{m}) = (\mathcal{V},\{\mathcal{A}_i\}_{i\in\mathcal{V}},\{\mathbf{u}_i\}_{i\in\mathcal{V}})$$

- $\mathcal{V} = \{ players \}$
- action $x_i \in A_i$ of node *i* is the set of m nodes node i points to.

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	•	00000	000	00
Centrality Maximization	Game			

$$\Gamma(\mathcal{V},\beta,\eta,\mathbf{m}) = (\mathcal{V},\{\mathcal{A}_i\}_{i\in\mathcal{V}},\{u_i\}_{i\in\mathcal{V}})$$

- $\mathcal{V} = \{ players \}$
- action $x_i \in A_i$ of node *i* is the set of m nodes node i points to.
- utility u_i of node i is the Bonacich centrality.

$$x \Rightarrow \mathcal{G}(x).$$

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for $m=2$	Conclusions
0	0	000 00	000	00
Results for $m=1$: Nash	equilibria			

- x^* is a Nash equilibrium $\Leftrightarrow \mathcal{G}(x^*)$ is of type $C_2^{l,r}$, where $2l + r = |\mathcal{V}|$:
 - *I* number of 2-cliques;
 - r nodes with in-degree equal to zero pointing at a 2-clique.

Example:

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	0000	000	00
Results for m=1: strict	Nash equilibria			

• If *n* is even, x^* is a strict Nash equilibrium $\Leftrightarrow \mathcal{G}(x^*)$ is of type $C_2^{n/2,0}$.

• If *n* is odd, there are no strict Nash equilibria.

Centrality Definition and Interpretations			Theore	etical	Formulation	Results for m=1	Results for m=2	Conclusions	
0				0			00000	000	00
-	1. 0	-	1.1						

Results for m=1: ordinal potential

• Function Ψ : $\mathcal{A} \to \mathbb{N}$ counting the number of 2-cliques is an ordinal potential;

 $\Psi = 3$

Centrality Definition and Interpretations		ions	The	oretical Forn	nulation	Results for m=1	Results for m=2		Conclusions	
0				0			00000		000	00
_			_	_		_				

Results for m=1: Best Response Dynamics

The best response dynamics of $\Gamma(\mathcal{V}, \beta, 1)$ always converges to a Nash equilibrium.

The **limit set** \mathcal{N}^* is:

- set of $C_2^{n/2,0}$, if *n* is even;
- set of $C_2^{(n-1)/2,1}$, if *n* is odd:

On a Centrality Maximization Game

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Idea of the proofs				

Best Response Function

• if $N_s^-(x) \neq \emptyset \Rightarrow B_s(x_{-s}) = \{j \mid j \in N_s^-(x)\}$

• if $N_s^-(x) = \emptyset \Rightarrow B_s(x_{-s}) = \{j \mid j \in \mathcal{V}\}$.

where $N_s^-(x)$ set of in-neighbors of s.

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Results for m=2: Nash	equilibria			

- If x^* is a Nash equilibrium:
 - every connected component of G(x) is either a sink or a source. (if not isolated)
 - every source component is a singleton or a 2-clique

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Results for m=2: Nash	equilibria			

- If x^* is a Nash equilibrium:
 - every connected component of G(x) is either a sink or a source. (if not isolated)
 - every source component is a singleton or a 2-clique
 - every sink component is either a cycle or the Butterfly graph

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Results for m=2: Strict	Nash equilibria			

 x^* is a strict Nash equilibrium $\Leftrightarrow G(x^*)$ is undirected.

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Idea of the proofs				

Characteristics of the best response set

 $\text{if } |N_s^{-2}(x)| \geq 2$

where $N_s^{-2}(x) = \{ j \mid dist_x(j, s) \le 2 \}.$

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions
0	0	00000	000	00
Idea of the proofs				

Characteristics of the best response set

 $|N_s^{-2}(x)| \geq 2$

 \Downarrow

 $B_s(x_{-s})\subseteq N_s^{-2}(x)$

where $N_s^{-2}(x) = \{ j \mid dist_x(j, s) \le 2 \}.$

Centrality Definition and Interpretations	Theoretical Formulation	Results for m=1	Results for m=2	Conclusions			
0	0	00000	000	•0			
Conclusions and Next Steps							

Results:

• The best strategy to maximize the Bonacich centrality is to act locally.

- Strict Nash equilibria are all and only **undirected graphs** if m = 1 or m = 2.
- Existence of an ordinal potential for m = 1.

Next steps:

• Generalization to any *m*.

