

On graphicality and decomposition of games

Laura Arditti, joint work with Giacomo Como and Fabio Fagnani Workshop on Network Dynamics in the Social, Economic and Financial Sciences, 4-8 November 2019

INTRODUCTION

- Graphical games: games equipped with a network structure
 - A graph specifies the pattern of dependence of utilities
- Model for the emergence of global phenomena
 - in socio-economic networks
 in engineering and computer science
- A general theory is still missing
 - how graphicality of games reflects on their properties?

INTRODUCTION

- Graphical games: games equipped with a network structure
 - A graph specifies the pattern of dependence of utilities
- Model for the emergence of global phenomena
 - in socio-economic networks
 - in engineering and computer science
- A general theory is still missing
 - how graphicality of games reflects on their properties?

INTRODUCTION

- Graphical games: games equipped with a network structure
 - A graph specifies the pattern of dependence of utilities
- Model for the emergence of global phenomena
 - in socio-economic networks
 - in engineering and computer science
- A general theory is still missing
 - how graphicality of games reflects on their properties?

GAMES

- Strategic form games:
- \mathcal{V} players $\forall i \in \mathcal{V}, A^i \text{ actions of } i$ $\mathcal{X} = \prod_{i \in \mathcal{V}} A^i \text{ strategies}$
- Γ(V, X): games with players V and strategies X, identified by the utility vector u.
- $x, y \in \mathcal{X}, i \in \mathcal{V}$. We say that x and y are *i*-comparable, if $x_j = y_j$ for every $j \neq i$ and $x_i \neq y_i$. $\mathcal{X}^{(2)} \subset \mathcal{X} \times \mathcal{X}$ pairs of comparable strategies.

• $\forall i \in \mathcal{V}, u_i : \mathcal{X} \to \mathbb{R}$ utility of *i*.

■ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a *G*-game if for every $x, y \in \mathcal{X}$

 $x_j = y_j \ \forall j \in N(i)^+ \cup \{i\} \ \Rightarrow \ u_i(x) = u_i(y) \,.$

- Every game is graphical on the complete graph on V
- $\mathcal{G}(u)$ is the minimal graph of u
- Pairwise graphical games
 - graphicality is a design property
 - undirected weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{W}, \mathcal{E})$. $\forall \{i, j\} \in \mathcal{E}$, players *i* and *j* are involved in a 2-player game $u_{\{i,j\}}$, with utilities u_{ij} and u_{ji} .
 - $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G} -game if

$$u_i(x) = \sum_{i \in \mathcal{V}} W_{ij} u_{ij}(x_i, x_j) \qquad \forall x \in \mathcal{X} ,$$

■ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a *G*-game if for every $x, y \in \mathcal{X}$

$$x_j = y_j \ \forall j \in \mathcal{N}(i)^+ \cup \{i\} \Rightarrow u_i(x) = u_i(y).$$

- Every game is graphical on the complete graph on V
- $\mathcal{G}(u)$ is the minimal graph of u

Pairwise graphical games

- graphicality is a design property
- undirected weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{W}, \mathcal{E})$. $\forall \{i, j\} \in \mathcal{E}$, players *i* and *j* are involved in a 2-player game $u_{\{i,j\}}$, with utilities u_{ij} and u_{ji} .
- $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G} -game if

$$u_i(x) = \sum_{i \in \mathcal{V}} W_{ij} u_{ij}(x_i, x_j) \qquad \forall x \in \mathcal{X} \,,$$

Laura Arditti, On graphicality and decomposition of games, 4/14

■ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a *G*-game if for every $x, y \in \mathcal{X}$

$$x_j = y_j \ \forall j \in \mathcal{N}(i)^+ \cup \{i\} \ \Rightarrow \ u_i(x) = u_i(y) \,.$$

- Every game is graphical on the complete graph on V
- $\mathcal{G}(u)$ is the minimal graph of u
- Pairwise graphical games
 - graphicality is a design property
 - undirected weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{W}, \mathcal{E})$. $\forall \{i, j\} \in \mathcal{E}$, players *i* and *j* are involved in a 2-player game $u_{\{i,j\}}$, with utilities u_{ij} and u_{ji} .
 - $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G} -game if

$$u_i(x) = \sum_{j \in \mathcal{V}} W_{ij} u_{ij}(x_i, x_j) \qquad \forall x \in \mathcal{X} \,,$$

■ $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a *G*-game if for every $x, y \in \mathcal{X}$

$$x_j = y_j \ \forall j \in \mathcal{N}(i)^+ \cup \{i\} \ \Rightarrow \ u_i(x) = u_i(y) \,.$$

- Every game is graphical on the complete graph on V
- $\mathcal{G}(u)$ is the minimal graph of u
- Pairwise graphical games
 - graphicality is a design property
 - undirected weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{W}, \mathcal{E})$. $\forall \{i, j\} \in \mathcal{E}$, players *i* and *j* are involved in a 2-player game $u_{\{i,j\}}$, with utilities u_{ij} and u_{ji} .
 - $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G} -game if

$$u_i(x) = \sum_{j \in \mathcal{V}} W_{ij} u_{ij}(x_i, x_j) \qquad \forall x \in \mathcal{X} \,,$$

STRATEGIC EQUIVALENCE

■ $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a non-strategic game ($u \in \mathcal{N}$) if $\forall i \in \mathcal{V}$ and any $(x, y) \in \mathcal{X}^{(2)}$ *i*-comparable,

$$u_i(x)-u_i(y)=0.$$

Games in \mathcal{N}^{\perp} are called normalized games as they satisfy the normalization condition:

$$\forall i \in \mathcal{V}, \forall x \in \mathcal{X}, \qquad \sum_{y:(y,x) \text{ are } i\text{-comp.}} u_i(y) = 0$$

- $u, v \in \Gamma(\mathcal{V}, \mathcal{X})$ are strategically equivalent if $u v \in \mathcal{N}$.
- In every strategic equivalence class [u], u ∈ Γ(V, X), there exists exactly one normalized member u^{norm}.

GRAPHICALITY OF STRATEGICALLY EQUIVALENT GAMES

Strategic equivalence does not preserve graphicality.

Theorem

Let $u \in \Gamma(\mathcal{V}, \mathcal{X})$. There exist $u^* \in [u]$ such that $\mathcal{G}(u^*)$ is minimal, i.e. $\mathcal{G}(u^*) \subseteq \mathcal{G}(v)$ for every $v \in [u]$. Moreover, a possible choice for u^* is the normalized game u^{norm} .

The minimal graph $\mathcal{G}([u])$ represents the minimal topological complexity needed to represent a game in [u].

GRAPHICALITY OF STRATEGICALLY EQUIVALENT GAMES

Strategic equivalence does not preserve graphicality.

Theorem

Let $u \in \Gamma(\mathcal{V}, \mathcal{X})$. There exist $u^* \in [u]$ such that $\mathcal{G}(u^*)$ is minimal, i.e. $\mathcal{G}(u^*) \subseteq \mathcal{G}(v)$ for every $v \in [u]$. Moreover, a possible choice for u^* is the normalized game u^{norm} .

The minimal graph $\mathcal{G}([u])$ represents the minimal topological complexity needed to represent a game in [u].

POTENTIAL AND HARMONIC GAMES

• $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a potential game if there exists a function $\phi \in \mathbb{R}^{\mathcal{X}}$, called potential, such that $\forall i \in \mathcal{V}$ and any two strategies x and y that are *i*-comparable

$$u_i(x)-u_i(y) = \phi(x)-\phi(y), \quad \forall (x,y) \in \mathcal{X}^{(2)}$$

■ $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is an harmonic game if for every strategy $x \in \mathcal{X}$

$$\sum_{i \in \mathcal{V}} \sum_{y:(y,x) \text{ are } i\text{-comp.}} u_i(x) - u_i(y) = 0$$

Laura Arditti, On graphicality and decomposition of games, 7/14

POTENTIAL AND HARMONIC GAMES

• $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a potential game if there exists a function $\phi \in \mathbb{R}^{\mathcal{X}}$, called potential, such that $\forall i \in \mathcal{V}$ and any two strategies x and y that are *i*-comparable

$$u_i(x)-u_i(y) = \phi(x)-\phi(y), \quad \forall (x,y) \in \mathcal{X}^{(2)}$$

• $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is an harmonic game if for every strategy $x \in \mathcal{X}$

$$\sum_{i \in \mathcal{V}} \sum_{y:(y,x) \text{ are } i\text{-comp.}} u_i(x) - u_i(y) = 0$$

Laura Arditti, On graphicality and decomposition of games, 7/14

DECOMPOSITION OF GAMES

Theorem (Candogan, Menache, Ozdaglar, Parrilo, 2010) *The space of games can be decomposed as*

 $\Gamma(\mathcal{V},\mathcal{X})=\mathcal{P}\oplus\mathcal{N}\oplus\mathcal{H}$

where \oplus denotes the direct sum. $\mathcal{P} = \mathcal{N}^{\perp} \cap P$ is the space of normalized potential games, \mathcal{N} is the space of non-strategic games, $\mathcal{H} = \mathcal{N}^{\perp} \cap H$ is the space of normalized harmonic games.

- Classical decomposition does not take into account graphical structure of games.
- Main result: how graphicality interacts with the decomposition of games.

DECOMPOSITION OF GAMES

Theorem (Candogan, Menache, Ozdaglar, Parrilo, 2010) *The space of games can be decomposed as*

 $\Gamma(\mathcal{V},\mathcal{X})=\mathcal{P}\oplus\mathcal{N}\oplus\mathcal{H}$

where \oplus denotes the direct sum. $\mathcal{P} = \mathcal{N}^{\perp} \cap P$ is the space of normalized potential games, \mathcal{N} is the space of non-strategic games, $\mathcal{H} = \mathcal{N}^{\perp} \cap H$ is the space of normalized harmonic games.

- Classical decomposition does not take into account graphical structure of games.
- Main result: how graphicality interacts with the decomposition of games.

 $u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

Pairwise graphical games \rightarrow classical decomposition can be exploited

Theorem

Let u be a pairwise \mathcal{G} -game with decomposition $u = u_{\mathcal{P}} + u_{\mathcal{H}} + u_{\mathcal{N}}$. Then

- $\mathcal{G}(u_{\mathcal{P}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely harmonic,
- $\mathcal{G}(u_{\mathcal{H}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely potential,
- $\mathcal{G}(u_{\mathcal{N}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not normalized.
- $\mathcal{G}(u_{\mathcal{P}}), \mathcal{G}(u_{\mathcal{H}}), \mathcal{G}(u_{\mathcal{N}})$ are subgraphs of \mathcal{G} .
 - decomposition does not create any link between players not directly interacting in the original game.

 $u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

 \blacksquare Pairwise graphical games \rightarrow classical decomposition can be exploited

Let u be a pairwise $\mathcal G\text{-}\mathsf{game}$ with decomposition $u=u_{\mathcal P}+u_{\mathcal H}+u_{\mathcal N}.$ Then

- $\mathcal{G}(u_{\mathcal{P}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely harmonic,
- $\mathcal{G}(u_{\mathcal{H}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely potential,
- $\mathcal{G}(u_{\mathcal{N}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not normalized.

$\mathcal{G}(u_{\mathcal{P}}),\mathcal{G}(u_{\mathcal{H}}),\mathcal{G}(u_{\mathcal{N}})$ are subgraphs of \mathcal{G} .

 decomposition does not create any link between players not directly interacting in the original game.

 $u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

 \blacksquare Pairwise graphical games \rightarrow classical decomposition can be exploited

Theorem

Let u be a pairwise $\mathcal G\text{-}\mathsf{game}$ with decomposition $u=u_{\mathcal P}+u_{\mathcal H}+u_{\mathcal N}.$ Then

- $\mathcal{G}(u_{\mathcal{P}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely harmonic,
- $\mathcal{G}(u_{\mathcal{H}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely potential,
- $\mathcal{G}(u_{\mathcal{N}})$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not normalized.
- $\mathcal{G}(u_{\mathcal{P}}), \mathcal{G}(u_{\mathcal{H}}), \mathcal{G}(u_{\mathcal{N}})$ are subgraphs of \mathcal{G} .
 - decomposition does not create any link between players not directly interacting in the original game.

■ Non pairwise graphical games → graphicality and decomposition interact in a complex fashion

Theorem 2

Every game $u \in \Gamma_G(\mathcal{V}, \mathcal{X})$ can be decomposed as $u = u_{\mathcal{P}} + u_{\mathcal{H}} + u_{\mathcal{N}}$ where

- the normalized potential component $u_{\mathcal{P}}$ is a $\mathcal{G}^{ riangle}$ -game
- the normalized harmonic component $u_{\mathcal{H}}$ is a $\mathcal{G}^{ riangle}$ -game
- the non-strategic component $u_{\mathcal{N}}$ is a \mathcal{G} -game
- G[△]: undirected graph with nodes V and links among players belonging to a common out-neighbourhood in G.
 - Hidden strategic interactions have short range.

■ Non pairwise graphical games → graphicality and decomposition interact in a complex fashion

Theorem 2

Every game $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ can be decomposed as $u = u_{\mathcal{P}} + u_{\mathcal{H}} + u_{\mathcal{N}}$ where

- the normalized potential component $u_{\mathcal{P}}$ is a $\mathcal{G}^{ riangle}$ -game
- the normalized harmonic component $u_{\mathcal{H}}$ is a $\mathcal{G}^{ riangle}$ -game
- the non-strategic component $u_{\mathcal{N}}$ is a \mathcal{G} -game
- G[△]: undirected graph with nodes V and links among players belonging to a common out-neighbourhood in G.
 - Hidden strategic interactions have short range.

GAME FLOWS

The space of flows is

$$F\ell = \left\{F \in \mathbb{R}^{\mathcal{X}^{(2)}} \,|\, F(x,y) = -F(y,x), \; orall (x,y) \in \mathcal{X}^{(2)}
ight\}$$

- Flows are defined on the edges of the strategy graph $\mathcal{G}_{str} = (\mathcal{X}, \mathcal{X}^{(2)}).$
- $D: \Gamma(\mathcal{V}, \mathcal{X}) \to F\ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the flow $Du = F \in F\ell$ s.t.

$$F(x,y) = u_i(y) - u_i(x) \quad \forall (x,y) \in \mathcal{X}^{(2)}$$

where i is the only player s.t. x and y are i-comparable.

- Flow characterization of potentiality, harmonicity and graphicality.
 - This allows us studying graphical games by analysing their flows.

GAME FLOWS

The space of flows is

$${\mathcal F}\ell = \left\{ {\mathcal F} \in {\mathbb R}^{{\mathcal X}^{(2)}} \, | \, {\mathcal F}(x,y) = - {\mathcal F}(y,x), \; orall (x,y) \in {\mathcal X}^{(2)}
ight\}$$

- Flows are defined on the edges of the strategy graph G_{str} = (X, X⁽²⁾).
- $D: \Gamma(\mathcal{V}, \mathcal{X}) \to F\ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the flow $Du = F \in F\ell$ s.t.

$$F(x,y) = u_i(y) - u_i(x) \quad \forall (x,y) \in \mathcal{X}^{(2)}$$

- where i is the only player s.t. x and y are i-comparable.
 - Flow characterization of potentiality, harmonicity and graphicality.
 - This allows us studying graphical games by analysing their flows.

GAME FLOWS

The space of flows is

$${\mathcal F}\ell = \left\{ {\mathcal F} \in {\mathbb R}^{{\mathcal X}^{(2)}} \, | \, {\mathcal F}(x,y) = - {\mathcal F}(y,x), \; orall (x,y) \in {\mathcal X}^{(2)}
ight\}$$

- Flows are defined on the edges of the strategy graph G_{str} = (X, X⁽²⁾).
- $D: \Gamma(\mathcal{V}, \mathcal{X}) \to F\ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the flow $Du = F \in F\ell$ s.t.

$$F(x,y) = u_i(y) - u_i(x) \quad \forall (x,y) \in \mathcal{X}^{(2)}$$

where i is the only player s.t. x and y are i-comparable.

- Flow characterization of potentiality, harmonicity and graphicality.
 - This allows us studying graphical games by analysing their flows.

EXAMPLE

- $\blacksquare~\mathcal{G}$ represents social interactions of players $\mathcal V$
- *Aⁱ* = {0,1}, ∀*i* ∈ *V*: players decide of acquiring (action 1) or not acquiring (0) some good
 - players $i \neq 1$ have imitative behaviour \rightarrow majority game

$$u_i(a_i, x_{N(i)}) = |\{j \in N(i) : x_j = a_i\}|, \qquad a_i = 0, 1$$

 $\blacksquare \ \mathsf{player} \ 1 \to \mathsf{public} \ \mathsf{good} \ \mathsf{game}$

$$\begin{split} & u_1(1, x_{\mathcal{N}(1)}) = 1 - c \\ & u_1(0, x_{\mathcal{N}(1)}) = 1 & \text{if } x_j = 1 \text{ for some } j \in \mathcal{N}(1) \\ & u_1(0, x_{\mathcal{N}(1)}) = 0 & \text{if } x_j = 0 \text{ for all } j \in \mathcal{N}(1) \end{split}$$

- Local perturbation of a potential game
 - locality is preserved in the decomposition.

Laura Arditti, On graphicality and decomposition of games, 12/14

EXAMPLE

FILENZA

- $\blacksquare~\mathcal{G}$ represents social interactions of players $\mathcal V$
- Aⁱ = {0,1}, ∀i ∈ V: players decide of acquiring (action 1) or not acquiring (0) some good
 - players i ≠ 1 have imitative behaviour → majority game

$$u_i(a_i, x_{N(i)}) = |\{j \in N(i) : x_j = a_i\}|, \qquad a_i = 0, 1$$

 $\blacksquare \ \mathsf{player} \ 1 \to \mathsf{public} \ \mathsf{good} \ \mathsf{game}$

$$u_1(1, x_{N(1)}) = 1 - c$$

 $u_1(0, x_{N(1)}) = 1$ if $x_j = 1$ for some $j \in N(1)$
 $u_1(0, x_{N(1)}) = 0$ if $x_j = 0$ for all $j \in N(1)$

- Local perturbation of a potential game
 - locality is preserved in the decomposition.

Laura Arditti, On graphicality and decomposition of games, 12/14

FUTURE WORK

- Refinement of the results
 - Separable graphical games
- Interpretation of the results
 - Role of hidden strategic interactions
- Graphical potential games and Markov Random Fields
 - Decomposition of the potential
- Robustness analysis of games
 - Properties of perturbations of potential games

Thank you for the attention

POLITECNICO DI TORINO

Laura Arditti, On graphicality and decomposition of games, 14/14