On graphicality and decomposition of games

Laura Arditti, joint work with Giacomo Como and Fabio Fagnani
Workshop on Network Dynamics in the Social, Economic and Financial Sciences, 4-8 November 2019

INTRODUCTION

- Graphical games: games equipped with a network structure
- A graph specifies the pattern of dependence of utilities
- Model for the emergence of global

INTRODUCTION

- Graphical games: games equipped with a network structure
- A graph specifies the pattern of dependence of utilities
- Model for the emergence of global phenomena

■ in socio-economic networks

- in engineering and computer science
- A general theory is still missing
- how graphicality of games
 reflects on their properties?

INTRODUCTION

- Graphical games: games equipped with a network structure
- A graph specifies the pattern of dependence of utilities
- Model for the emergence of global phenomena
- in socio-economic networks
- in engineering and computer science
- A general theory is still missing
- how graphicality of games reflects on their properties?

GAMES

- Strategic form games:
- \mathcal{V} players
$\forall i \in \mathcal{V}, A^{i}$ actions of i
■ $\forall i \in \mathcal{V}, u_{i}: \mathcal{X} \rightarrow \mathbb{R}$ utility of i.
$\mathcal{X}=\prod_{i \in \mathcal{V}} A^{i}$ strategies
$\Gamma(\mathcal{V}, \mathcal{X})$: games with players \mathcal{V} and
strategies \mathcal{X}, identified by the utility
$\Gamma(\mathcal{V}, \mathcal{X}):$ games with players \mathcal{V} and
strategies \mathcal{X}, identified by the utility vector u.
- $x, y \in \mathcal{X}, i \in \mathcal{V}$. We say that x and
y are i-comparable, if $x_{j}=y_{j}$ for
- $x, y \in \mathcal{X}, i \in \mathcal{V}$. We say that x and
y are i-comparable, if $x_{j}=y_{j}$ for every $j \neq i$ and $x_{i} \neq y_{i}$.
$\mathcal{X}^{(2)} \subset \mathcal{X} \times \mathcal{X}$ pairs of comparable
strategies.

GRAPHICAL GAMES

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a \mathcal{G}-game if for every $x, y \in \mathcal{X}$

$$
x_{j}=y_{j} \forall j \in N(i)^{+} \cup\{i\} \Rightarrow u_{i}(x)=u_{i}(y)
$$

- Every game is graphical on the complete graph on \mathcal{V}
- $\mathcal{G}(u)$ is the minimal graph of u
- Pairwise graphical games


```
- graphicality is a
■ undirected weighted graph \(\mathcal{G}=(\mathcal{V}, W, \mathcal{E}) . \forall\{i, j\} \in \mathcal{E}\), players \(i\) and \(j\) are involved in a 2-player game \(u_{\{i, j\}}\), with utilities \(u_{i j}\) and \(u_{j i}\).
\(\square u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})\) is a pairwise graphical \(\mathcal{G}\)-game if
- undirected weighted graph G}=(\mathcal{V},W,\mathcal{E}).\forall{i,j}\in\mathcal{E}, players i and j ar
    םu
```

$u_{i}(x)=\sum W_{i j} u_{i j}\left(x_{i}, x_{j}\right) \quad \forall x \in \mathcal{X}$

GRAPHICAL GAMES

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a \mathcal{G}-game if for every $x, y \in \mathcal{X}$
$x_{j}=y_{j} \forall j \in N(i)^{+} \cup\{i\} \Rightarrow u_{i}(x)=u_{i}(y)$.
- Every game is graphical on the complete graph on \mathcal{V}
- $\mathcal{G}(u)$ is the minimal graph of u

- Pairwise graphical games
- graphicality is a
- undirected weighted graph $\mathcal{G}=(\mathcal{V}, W, \mathcal{E}) . \forall\{i, j\} \in \mathcal{E}$, players i and j are involved in a 2-player game $u_{\{i, j\}}$, with utilities $u_{i j}$ and $u_{j i}$.
■ $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G}-game if

GRAPHICAL GAMES

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a \mathcal{G}-game if for every $x, y \in \mathcal{X}$

$$
x_{j}=y_{j} \forall j \in N(i)^{+} \cup\{i\} \Rightarrow u_{i}(x)=u_{i}(y) .
$$

- Every game is graphical on the complete graph on \mathcal{V}
- $\mathcal{G}(u)$ is the minimal graph of u
- Pairwise graphical games
- graphicality is a

■ undirected weighted graph $\mathcal{G}=(\mathcal{V}, W, \mathcal{E}) . \forall\{i, j\} \in \mathcal{E}$, players i and j are involved in a 2-player game $u_{\{i, j\}}$, with utilities $u_{i j}$ and $u_{j i}$.
■ $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G}-game if

-

GRAPHICAL GAMES

- $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ digraph. $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a \mathcal{G}-game if for every $x, y \in \mathcal{X}$

$$
x_{j}=y_{j} \forall j \in N(i)^{+} \cup\{i\} \Rightarrow u_{i}(x)=u_{i}(y)
$$

- Every game is graphical on the complete graph on \mathcal{V}
- $\mathcal{G}(u)$ is the minimal graph of u

- Pairwise graphical games
- graphicality is a design property

■ undirected weighted graph $\mathcal{G}=(\mathcal{V}, W, \mathcal{E}) . \forall\{i, j\} \in \mathcal{E}$, players i and j are involved in a 2-player game $u_{\{i, j\}}$, with utilities $u_{i j}$ and $u_{j i}$.
■ $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ is a pairwise graphical \mathcal{G}-game if

$$
u_{i}(x)=\sum_{j \in \mathcal{V}} W_{i j} u_{i j}\left(x_{i}, x_{j}\right) \quad \forall x \in \mathcal{X}
$$

STRATEGIC EQUIVALENCE

- $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a non-strategic game $(u \in \mathcal{N})$ if $\forall i \in \mathcal{V}$ and any $(x, y) \in \mathcal{X}^{(2)}$ i-comparable,

$$
u_{i}(x)-u_{i}(y)=0
$$

- Games in \mathcal{N}^{\perp} are called normalized games as they satisfy the normalization condition:

$$
\forall i \in \mathcal{V}, \forall x \in \mathcal{X}, \quad \sum_{y:(y, x) \text { are i-comp. }} u_{i}(y)=0
$$

$\square u, v \in \Gamma(\mathcal{V}, \mathcal{X})$ are strategically equivalent if $u-v \in \mathcal{N}$.

- in every strategic equivalence class $[u], u \in \Gamma(\mathcal{V}, \mathcal{X})$, there exists exactly one normalized member $u^{\text {norm }}$.

GRAPHICALITY OF STRATEGICALLY EQUIVALENT GAMES

- Strategic equivalence does not preserve graphicality.

Theorem

Let $u \in \Gamma(\mathcal{V}, \mathcal{X})$. There exist $u^{*} \in[u]$ such that $\mathcal{G}\left(u^{*}\right)$ is minimal, i.e. $\mathcal{G}\left(u^{*}\right) \subseteq \mathcal{G}(v)$ for every $v \in[u]$ Moreover, a possible choice for u^{*} is the normalized game $u^{\text {norm }}$

- The minimal graph $\mathcal{G}([u])$ represents the n
topological complexity needed to represent a game
in $[u]$

GRAPHICALITY OF STRATEGICALLY EQUIVALENT GAMES

- Strategic equivalence does not preserve graphicality.

Theorem

Let $u \in \Gamma(\mathcal{V}, \mathcal{X})$. There exist $u^{*} \in[u]$ such that $\mathcal{G}\left(u^{*}\right)$ is minimal, i.e. $\mathcal{G}\left(u^{*}\right) \subseteq \mathcal{G}(v)$ for every $v \in[u]$.
Moreover, a possible choice for u^{*} is the normalized game $u^{\text {norm }}$.

- The minimal graph $\mathcal{G}([u])$ represents the minimal topological complexity needed to represent a game in [u].

POTENTIAL AND HARMONIC GAMES

- $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a potential game if there exists a function $\phi \in \mathbb{R}^{\mathcal{X}}$, called potential, such that $\forall i \in \mathcal{V}$ and any two strategies x and y that are i-comparable

$$
u_{i}(x)-u_{i}(y)=\phi(x)-\phi(y), \quad \forall(x, y) \in \mathcal{X}^{(2)}
$$


```
u\in\Gamma(\mathcal{V},\mathcal{X})\mathrm{ is an harmo}
```

$i \in \mathcal{V} y:(y, x)$ are i-comp.

$u_{i}(x)-u_{i}(y)=0$

POTENTIAL AND HARMONIC GAMES

- $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is a potential game if there exists a function $\phi \in \mathbb{R}^{\mathcal{X}}$, called potential, such that $\forall i \in \mathcal{V}$ and any two strategies x and y that are i-comparable

$$
u_{i}(x)-u_{i}(y)=\phi(x)-\phi(y), \quad \forall(x, y) \in \mathcal{X}^{(2)}
$$

- $u \in \Gamma(\mathcal{V}, \mathcal{X})$ is an harmonic game if for every strategy $x \in \mathcal{X}$

$$
\sum_{i \in \mathcal{V}} \sum_{y:(y, x) \text { are } i \text {-comp. }} u_{i}(x)-u_{i}(y)=0
$$

DECOMPOSITION OF GAMES

Theorem (Candogan, Menache, Ozdaglar, Parrilo, 2010)
The space of games can be decomposed as

$$
\Gamma(\mathcal{V}, \mathcal{X})=\mathcal{P} \oplus \mathcal{N} \oplus \mathcal{H}
$$

where \oplus denotes the direct sum. $\mathcal{P}=\mathcal{N}^{\perp} \cap P$ is the space of normalized potential games, \mathcal{N} is the space of non-strategic games, $\mathcal{H}=\mathcal{N}^{\perp} \cap H$ is the space of normalized harmonic games.

- Classical decomposition does not take into account graphical structure of games.
- Main result: how graphicality interacts with the decomposition of games.

DECOMPOSITION OF GAMES

Theorem (Candogan, Menache, Ozdaglar, Parrilo, 2010)
The space of games can be decomposed as

$$
\Gamma(\mathcal{V}, \mathcal{X})=\mathcal{P} \oplus \mathcal{N} \oplus \mathcal{H}
$$

where \oplus denotes the direct sum. $\mathcal{P}=\mathcal{N}^{\perp} \cap P$ is the space of normalized potential games, \mathcal{N} is the space of non-strategic games, $\mathcal{H}=\mathcal{N}^{\perp} \cap H$ is the space of normalized harmonic games.

- Classical decomposition does not take into account graphical structure of games.
- Main result: how graphicality interacts with the decomposition of games.

DECOMPOSITION OF GRAPHICAL GAMES

$u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

```
Pairwise graphical games }->\mathrm{ classical decomposition can be
Theorem
Let }u\mathrm{ be a pairwise G}\mathrm{ -game with decomposition }u=\mp@subsup{u}{\mathcal{P}}{}+\mp@subsup{u}{\mathcal{H}}{}+\mp@subsup{u}{N}{
Then
    -G(up) contains {i,j}\in\mathcal{E}\mathrm{ iff }\mp@subsup{u}{{i,j}}{}\mathrm{ is not purely harmonic,}
    - G}(\mp@subsup{u}{\mathcal{H}}{})\mathrm{ contains {i,j} 隹 iff }\mp@subsup{u}{{i,j}}{}\mathrm{ is not purely potential,
    - G(
G(
    - decomposition does not create any link between
    players not directly interacting in the original game
```


DECOMPOSITION OF GRAPHICAL GAMES

$u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

- Pairwise graphical games \rightarrow classical decomposition can be exploited

Theorem
Let u be a pairwise \mathcal{G}-game with decomposition $u=u_{\mathcal{P}}+u_{\mathcal{H}}+u_{\mathcal{N}}$. Then

■ $\mathcal{G}\left(u_{\mathcal{P}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely harmonic,
■ $\mathcal{G}\left(u_{\mathcal{H}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely potential,

- $\mathcal{G}\left(u_{\mathcal{N}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not normalized.

$\mathcal{G}\left(u_{\mathcal{P}}\right), \mathcal{G}\left(u_{\mathcal{H}}\right), \mathcal{G}\left(u_{\mathcal{N}}\right)$ are subgraphs of \mathcal{G}.
- decomposition does not create any link between players not directly interacting in the original game.

DECOMPOSITION OF GRAPHICAL GAMES

$u \in \Gamma_{\mathcal{G}}(\mathcal{X}, \mathcal{V})$. On which graph are its component graphical? What is the relation with \mathcal{G} ?

- Pairwise graphical games \rightarrow classical decomposition can be exploited

Theorem
Let u be a pairwise \mathcal{G}-game with decomposition $u=u_{\mathcal{P}}+u_{\mathcal{H}}+u_{\mathcal{N}}$. Then

- $\mathcal{G}\left(u_{\mathcal{P}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely harmonic,

■ $\mathcal{G}\left(u_{\mathcal{H}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not purely potential,

- $\mathcal{G}\left(u_{\mathcal{N}}\right)$ contains $\{i, j\} \in \mathcal{E}$ iff $u_{\{i, j\}}$ is not normalized.
- $\mathcal{G}\left(u_{\mathcal{P}}\right), \mathcal{G}\left(u_{\mathcal{H}}\right), \mathcal{G}\left(u_{\mathcal{N}}\right)$ are subgraphs of \mathcal{G}.
- decomposition does not create any link between players not directly interacting in the original game.

DECOMPOSITION OF GRAPHICAL GAMES

- Non pairwise graphical games \rightarrow graphicality and decomposition interact in a complex fashion

Theorem 2
Every game $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ can be decomposed as $u=u_{\mathcal{P}}+u_{\mathcal{H}}+u_{\mathcal{N}}$ where

- the normalized potential component $u_{\mathcal{P}}$ is a \mathcal{G}^{\triangle}-game
- the normalized harmonic component $u_{\mathcal{H}}$ is a \mathcal{G}^{\triangle}-game
- the non-strategic component $U_{\mathcal{N}}$ is a \mathcal{G}-game
\mathcal{G}^{\triangle} : undirected graph with nodes \mathcal{V} and links among players belonging to a common out-neighbourhood in \mathcal{G}.
- Hidden strategic interactions have short range.

DECOMPOSITION OF GRAPHICAL GAMES

- Non pairwise graphical games \rightarrow graphicality and decomposition interact in a complex fashion

Theorem 2
Every game $u \in \Gamma_{\mathcal{G}}(\mathcal{V}, \mathcal{X})$ can be decomposed as $u=u_{\mathcal{P}}+u_{\mathcal{H}}+u_{\mathcal{N}}$ where

■ the normalized potential component $u_{\mathcal{P}}$ is a \mathcal{G}^{\triangle}-game
■ the normalized harmonic component $u_{\mathcal{H}}$ is a \mathcal{G}^{\triangle}-game

- the non-strategic component $u_{\mathcal{N}}$ is a \mathcal{G}-game
- \mathcal{G}^{\triangle} : undirected graph with nodes \mathcal{V} and links among players belonging to a common out-neighbourhood in \mathcal{G}.

■ Hidden strategic interactions have short range.

GAME FLOWS

- The space of flows is
$F \ell=\left\{F \in \mathbb{R}^{\mathcal{X}^{(2)}} \mid F(x, y)=-F(y, x), \forall(x, y) \in \mathcal{X}^{(2)}\right\}$
- Flows are defined on the edges of the strategy graph $\mathcal{G}_{\text {str }}=\left(\mathcal{X}, \mathcal{X}^{(2)}\right)$.

$D: \Gamma(\mathcal{V}, \mathcal{X}) \rightarrow F \ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the $F(x, y)=u_{i}(y)-u_{i}(x) \quad \forall(x, y) \in \mathcal{X}^{(2)}$ where i is the only player s.t. x and y are i-comparable. - Flow characterization of potentiality, harmonicity and graphicality.

- This allows us studying graphical games by analysing their flows.

GAME FLOWS

- The space of flows is
$F \ell=\left\{F \in \mathbb{R}^{\mathcal{X}^{(2)}} \mid F(x, y)=-F(y, x), \forall(x, y) \in \mathcal{X}^{(2)}\right\}$
- Flows are defined on the edges of the strategy graph $\mathcal{G}_{\text {str }}=\left(\mathcal{X}, \mathcal{X}^{(2)}\right)$.
- $D: \Gamma(\mathcal{V}, \mathcal{X}) \rightarrow F \ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the flow $D u=F \in F \ell$ s.t.

$$
F(x, y)=u_{i}(y)-u_{i}(x) \quad \forall(x, y) \in \mathcal{X}^{(2)}
$$

where i is the only player s.t. x and y are i-comparable.

- Flow characterization of potentiality, harmonicity and graphicality.
- This allows us studying graphical games by analysing their flows.

GAME FLOWS

- The space of flows is
$F \ell=\left\{F \in \mathbb{R}^{\mathcal{X}^{(2)}} \mid F(x, y)=-F(y, x), \forall(x, y) \in \mathcal{X}^{(2)}\right\}$
- Flows are defined on the edges of the strategy graph $\mathcal{G}_{\text {str }}=\left(\mathcal{X}, \mathcal{X}^{(2)}\right)$.
- $D: \Gamma(\mathcal{V}, \mathcal{X}) \rightarrow F \ell$ maps the game $u \in \Gamma(\mathcal{V}, \mathcal{X})$ to the flow $D u=F \in F \ell$ s.t.

$$
F(x, y)=u_{i}(y)-u_{i}(x) \quad \forall(x, y) \in \mathcal{X}^{(2)}
$$

where i is the only player s.t. x and y are i-comparable.

- Flow characterization of potentiality, harmonicity and graphicality.
- This allows us studying graphical games by analysing their flows.

EXAMPLE

- \mathcal{G} represents social interactions of players \mathcal{V}
- $\mathcal{A}^{i}=\{0,1\}, \forall i \in \mathcal{V}$: players decide of acquiring (action

1) or not acquiring (0) some good

- players $i \neq 1$ have imitative behaviour \rightarrow majority

$$
u_{i}\left(a_{i}, x_{N(i)}\right)=\left|\left\{j \in N(i): x_{j}=a_{i}\right\}\right|, \quad a_{i}=0,1
$$

- player $1 \rightarrow$ public good game

$$
\begin{aligned}
& u_{1}\left(1, x_{N(1)}\right)=1-c \\
& u_{1}\left(0, x_{N(1)}\right)=1 \quad \text { if } x_{j}=1 \text { for some } j \in N(1) \\
& u_{1}\left(0, x_{N(1)}\right)=0 \quad \text { if } x_{j}=0 \text { for all } j \in N(1)
\end{aligned}
$$

- Local perturbation of a potential game
- locality is preserved in the decomposition.

EXAMPLE

- \mathcal{G} represents social interactions of players \mathcal{V}
- $\mathcal{A}^{i}=\{0,1\}, \forall i \in \mathcal{V}$: players decide of acquiring (action

1) or not acquiring (0) some good

- players $i \neq 1$ have imitative behaviour \rightarrow majority game

$$
u_{i}\left(a_{i}, x_{N(i)}\right)=\left|\left\{j \in N(i): x_{j}=a_{i}\right\}\right|, \quad a_{i}=0,1
$$

- player $1 \rightarrow$ public good game

$$
\begin{aligned}
& u_{1}\left(1, x_{N(1)}\right)=1-c \\
& u_{1}\left(0, x_{N(1)}\right)=1 \quad \text { if } x_{j}=1 \text { for some } j \in N(1) \\
& u_{1}\left(0, x_{N(1)}\right)=0 \quad \text { if } x_{j}=0 \text { for all } j \in N(1)
\end{aligned}
$$

- Local perturbation of a potential game

- locality is preserved in the decomposition.

FUTURE WORK

- Refinement of the results
- Separable graphical games
- Interpretation of the results

■ Role of hidden strategic interactions

- Graphical potential games and Markov Random Fields
- Decomposition of the potential
- Robustness analysis of games
- Properties of perturbations of potential games

\square

Thank you for the attention

POLITECNICO
DI TORINO

