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Introduction

Diffusion in networks: a widely studied topic (see surveys in Jackson
(2008), Bramoullé et al. (2016), Acemoglu & Ozdaglar (2011), etc.)
with many applications (adoption of new technology, opinion
formation, fashion, contagion and disease infection, etc.)

Our point of departure is the work of Morris (2000) who
characterizes the contagion threshold.

G–R (2013) investigate a model of influence based on aggregation
functions, where each agent modifies his opinion by aggregating the
current opinions of all agents, and Foerster–G–R (2013) model
anonymous influence by OWA operators.

We apply the model of G–R (2013) to model diffusion in countably
infinite networks, with arbitrary structure.

Our aim is to study the evolution in the long run of the diffusion
process, in particular to answer the following questions:

How does the diffusion evolve from a finite set of active agents?
Is polarization possible? Can we have cycling phenomena?
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Countable networks

Let X be the set of agents, where X is countably infinite (e.g., Z2)

We define as in (Morris, 2000) the neighborhood relation ∼ on X:
x ∼ y (x is neighbor with y) is a binary relation which is:

irreflexive
symmetric
bounded: each x has at most M neighbors, where M is a fixed
constant
connected: for every x , y ∈ X, there exists a finite path connecting x
to y , i.e., there exists x1, . . . , xk ∈ X such that x1 = x , xk = y and
xi ∼ xi+1 for each i = 1, . . . , k − 1.

(X,∼) is called a (countable) network.

The neighborhood of x is Γ(x) = {y : x ∼ y}. Note that Γ(x) is
finite and x 6∈ Γ(x).
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Examples

X = Z, x ∼ y if |x − y | ≤ 1
x

X = Z
2, and x ∼ y if d(x , y) ≤ θ (d is, e.g., the Euclidean

distance).

θ = 1: 4 neighbors (north, south, east, west)
θ =

√
2: 8 neighbors (4 on the diagonals in addition)

x

5/42 M. Grabisch, A. Rusinowska, X. Venel c©2019 Diffusion in large networks



Examples

the hexagonal pavement: each x has 3 neighbors

x

X = Z
d , d ≥ 1, and the neighborhood is defined by, e.g., the

Euclidean distance
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Examples

Hierarchy: each player has m subordinates, and one superior (except
the root).

x
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The society

Each agent can have two statuses 0 and 1 (opinion on a given
subject, adoption of a new technology, infection by some disease,
etc.).

If the status is 1, the agent is active, otherwise the agent is inactive.

Let Ω = {0, 1}X be the set of all possible configurations of activity:

for ω ∈ Ω, ω(x) =

{

1 if agent x is active,

0 if inactive

Any configuration ω can be seen as the set X of its active agents by
1X ≡ ω

0 or ∅ ω or X 1 or X
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The diffusion process: aggregation functions

An aggregation function with n entries is a mapping
A : [0, 1]n → [0, 1] which is nondecreasing in each variable,
A(1, . . . , 1) = 1, A(0, . . . , 0) = 0.

It is symmetric or anonymous if A(z1, . . . , zn) = A(zσ(1), . . . , zσ(n))
for every permutation σ on [n].

We distinguish 3 cases:

1 A is strict: A(z) = 0 iff z is the 0 vector and A(z) = 1 iff z is the 1
vector;

2 A is 0-1-valued (Boolean aggregation function)

3 A is nonstrict and nonBoolean, i.e., there exist z ∈ [0, 1]n s.t.
0 < A(z) < 1, and there exist z ′ 6= 0 s.t. A(z ′) = 0, or z ′′ 6= 1 s.t.
A(z ′′) = 1.
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The diffusion process: Informal definition

The probability for an agent x to be active at time t + 1 given the
configuration ω at time t is given by

P(x | ω) = A(ω|Γ(x))
We assume that the probabilities conditionally on ω are independent.

trajectory: sequence ω(0), ω(1), . . . , ω(t), . . . s.t. |ω(t)| < ∞ ∀t,
with a positive probability of transition from one to the next.

X0 X1 X2

Figure: Example of a trajectory with Z
2 and the NESW neighborhood
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The diffusion process: Formal definition (1/2)

Markov process on Ω, but Ω is uncountable.

It requires working on σ-fields.

Given X ,Y disjoint subsets of X , the cylinder (X ,Y )+ is defined by

{ω ∈ Ω, ω|X = 1 and ω|Y = 0}.

Let T be the σ-field generated by the finite cylinders.

We define a Markov Kernel on Ω, i.e., a mapping K from Ω× T to
[0, 1] such that

For every ω ∈ Ω, K (ω, ·) is a probability measure on T ,
For every A ∈ T , K (·,A) is measurable.

K (ω,A) can be interpreted as the probability that from
configuration ω the process jumps at next time step into a
configuration belonging to A.
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The diffusion process: Formal definition (2/2)

Fix ω ∈ Ω.

For any finite Y ⊂ X , consider {0, 1}Y the set of partial
configurations on Y .

Let µY ,ω be the probability distribution on partial configurations h
defined by

µY ,ω({h}) =
∏

y∈Y

(

P(y | ω)h(y) + (1− P(y | ω))(1 − h(y))
)

where P(y | ω) = A(ω|Γ(y)).
µY ,ω only depends on ω restricted to Y and its neighbors.

(µY ,ω)Y⊂X satisfies the assumption of Kolmogorov extension theorem
hence can be extended into K (ω, .) over (Ω,T ). Moreover, K (·,A) is

measurable.
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Closure and interior

Given X ⊆ X, we define its closure X and interior X̊ by

X = {x ∈ X : Γ(x) ∩ X 6= ∅} and X̊ = {x ∈ X : Γ(x) ⊆ X}
We have X̊ ⊆ X , but it is not true in general that X̊ ⊆ X ⊆ X .
X and X̊ , viewed as mappings on (2X,⊆), are monotone:

X ⊂ X ′ ⇒ X̊ ⊆ X̊ ′ and X ⊆ X
′
.

X X̊ X

Figure: Interior and closure of a set X
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Closure and interior

We have locally that

x ∈ X̊ ⇒ P(x | X ) = 1, x 6∈ X ⇒ P(x | X ) = 0

Consequently, given that X is the set of active agents at time t, the
set X ′ of active agents at time t + 1 lies in the interval

[X̊ ,X ] := {Y ∈ 2X | X̊ ⊆ Y ⊆ X}.

with probability 1.

If A is strict and X is finite, then X ′ can be any set in [X̊ ,X ] with a
positive probability.
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Deterministic transitions: Fixed points

From the previous result, a transition from X is deterministic iff X̊ = X .
1st case: A fixed point is a configuration X such that X̊ = X = X .

Lemma 1

There is no other fixed point than X and ∅.
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Deterministic transitions: Blinkers

The other case:

Lemma 2

Consider X such that X̊ = X 6= X . The following holds.

1 X c has the same property.

2 X̊ = X c

Consequence: for such an X , {X ,X c} is a periodic absorbing class of
period 2. We call such an X a blinker.

Lemma 3

If a blinker exists, it is unique up to complementation.
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Examples of blinker

X = Z
2 with the NESW neighborhood: sum of coordinates is odd
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Examples of blinker

The hexagonal pavement: every 2 nodes on each hexagon
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Examples of blinker

Hierarchies: odd layers
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Absorbing and transient sets; irreducibility

A set A ∈ T is called absorbing if K (ω,A) = 1 for every ω ∈ A.

A set A ∈ T is called transient if for every configuration ω ∈ A
there exists n ∈ N such that Kn(ω,A) < 1.

Given φ a σ-finite measure on T , the Markov chain is φ-irreducible if

+∞
∑

n=1

Kn(ω,A) > 0,∀ω ∈ Ω whenever φ(A) > 0

i.e., if there is a positive probability that starting from any
configuration, the process reaches after some step any set of
configurations, provided this set has a positive measure (w.r.t. φ).

A set of configurations A ∈ T is a φ-irreducible set if for every
ω ∈ A, every B ∈ T|A s.t. φA(B) > 0, Kn(ω,B) > 0 for some n.

Observe that {0} and {1} are φ-irreducible classes (absorbing and
φ-irreducible sets).
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Partition of Ω

As a blinker X exists, we partition X in two blocks, corresponding to
X and X c . We denote this partition as X = Xe ∪ Xo .

Xe is the set of even nodes, while Xo is the set of odd nodes.

We introduce a partition of Ω depending on the number of 1 and 0
in Xe and Xo .

A block of the partition is characterized by a 4-uple

(a, b, c , d) with coordinates in {0,F ,∞}

representing the ”number” of (even - 0, even - 1, odd - 0, odd - 1).

There are 25 non-empty blocks in the partition

Example: (∞, 0,∞, 0) is the singleton {0} = {∅}, (0,∞,∞, 0) is
the singleton {Xe}.

23/42 M. Grabisch, A. Rusinowska, X. Venel c©2019 Diffusion in large networks



Absorbing and transient sets

Theorem

The following sets of configurations are respectively:

(i) finite φ-irreducible classes:

- (∞, 0,∞, 0),
- (0,∞, 0,∞),

- (0,∞,∞, 0) ∪ (∞, 0, 0,∞).

(ii) infinite uncountable absorbing sets:

- (∞,∞,∞,∞),
- (∞, 0,∞,∞) ∪ (∞,∞,∞, 0),

- (0,∞,∞,∞) ∪ (∞,∞, 0,∞).

(iii) infinite transient sets:

- (∞,F ,∞,F ),
- (F ,∞,F ,∞),
- (F ,∞,∞,F ) ∪ (∞,F ,F ,∞),
- (∞,F ,∞,∞) ∪ (∞,∞,∞,F ),
- (F ,∞,∞,∞) ∪ (∞,∞,F ,∞),

- (∞,F ,∞, 0) ∪ (∞, 0,∞,F ),

- (F ,∞, 0,∞) ∪ (0,∞,F ,∞),

- (0,∞,∞,F ) ∪ (∞,F , 0,∞),

- (F ,∞,∞, 0) ∪ (∞, 0,F ,∞).
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φ-irreducible sets

φ-irreducibility does not always hold!

Example 1: not enough room to move configurations

Take Z with the 1-neighborhood. Then (∞,∞,∞, 0) ∪ (∞, 0,∞,∞) is
not φ-irreducible.

From
0

one cannot reach
0
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φ-irreducible sets

Example 2: not enough room to store configurations

Take Z
2 with the 1-neighborhhod, with two additional nodes α, β. They

have same parity, say even. Then again (∞,∞,∞, 0) ∪ (∞, 0,∞,∞) is
not φ-irreducible because α, β having only one neighbor who is common
to both, cannot take different statuses.

α β
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Complex stars

Definition

A complex star is a 7-uple (s∗, s1, s2, s3, s
′
1, s

′
2, s

′
3) ∈ X

7 such that:

- s1, s2, s3 are 3 distinct nodes;

- {s1, s2, s3} ⊆ Γ(s∗);

- s ′1 ∈ Γ(s1), s
′
2 ∈ Γ(s2) and s ′3 ∈ Γ(s3);

- s∗ /∈ {s ′1, s ′2, s ′3}.
Informally, s∗ is the center of a star with three branches that have at
least a depth of two. Recall that by assumption (X,∼) admits a blinker,
and therefore we know that {s ′1, s ′2, s ′3, s∗} ∩ {s1, s2, s3} = ∅. Also, note
that we do not assume that s ′1, s

′
2 and s ′3 are distinct.

Necessary and sufficient conditions on the graph for the existence of
complex stars are known.
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Storing configurations

Definition

We say that a partial configuration (X ,Y ) of Xo can be stored if there
exists a mapping θ from Xo to Xe such that

1 for every x ∈ X ∪ Y , θ(x) ∈ Γ(x),

2 for every x ∈ X and every y ∈ Y , θ(x) 6= θ(y).

θ is called a storing function. Observe that θ(X ∪ Y ) ⊆ X ∪ Y .

When θ is an injection from X ∪ Y to X ∪ Y , the problem amounts
to finding a matching in the bipartite graph (X ∪ Y ,X ∪ Y ).

If (X,∼) is k-regular or is a hierarchy, then any configuration can be
stored.
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The Richness Assumption

Richness Assumption. (X,∼) is said to be rich if:

1 There exists an infinite number of complex stars.
2 Any partial configuration (X ,Y ) on Xo and on Xe can be

stored.

All the networks introduced in the examples satisfy the richness
assumption (except (Zd ,∼) with d = 1 which has no complex star),
since they are all k-regular or a hierarchy, and they contain infinitely
many complex stars.
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The main result

Theorem

Assume that (X,∼) satisfies the Richness Assumption. The following
sets are
(i) Finite φ-irreducible classes:

(1) (0,∞, 0,∞) (this is X);
(2) (∞, 0,∞, 0) (this is ∅);
(3) (0,∞,∞, 0) ∪ (∞, 0, 0,∞) (this is the blinker);

(ii) Infinite (uncountable) φ-irreducible classes:

(4) (∞,∞,∞,∞);
(5) (∞, 0,∞,∞) ∪ (∞,∞,∞, 0);
(6) (0,∞,∞,∞) ∪ (∞,∞, 0,∞);

(iii) Transient and φ-irreducible sets:
(a) (∞,F ,∞,F );
(b) (F ,∞,F ,∞);
(c) (F ,∞,∞,F ) ∪ (∞,F ,F ,∞);
(d) (∞,F ,∞,∞) ∪ (∞,∞,∞,F );
(e) (F ,∞,∞,∞) ∪ (∞,∞,F ,∞);

(f) (∞,F ,∞, 0) ∪ (∞, 0,∞,F );

(g) (F ,∞, 0,∞) ∪ (0,∞,F ,∞);

(h) (0,∞,∞,F ) ∪ (∞,F , 0,∞);

(i) (F ,∞,∞, 0) ∪ (∞, 0,F ,∞).
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Interpretation

Every set of configurations with a “F” is transient: no group of
agents can remain active for ever, no cycle between groups, etc.: no
polarization is possible.

Class (3) is a cycle, and classes (5) and (6) are periodic, all of them
of period 2.

An initial finite set of active agents must finish in the long run into
one of the absorbing classes (1) to (6). Our study does not permit
to say in which one with which probability (seems to be extremely
difficult to determine)

We conjecture however that most probably the process will end in
Class (4). In this class, the diffusion is erratic but homogeneous, in
the sense that everywhere there are active and inactive agents, on
odd and even positions.
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Surviving without blinker

The main proof mechanism still works because of the following result:

Proposition

Given a network (X,∼), there exists a subnetwork (X,≈) that admits a
blinker.
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Results

As a graph admits in general many subgraphs with a blinker, the
distinction between odd and even nodes does not make sense any
more.

Therefore, blocks of the partition of the set of configurations are
denoted by (a, b) with a, b ∈ {0,F ,∞}, with a, b indicating the
number of inactive and active nodes, respectively.

Theorem

Assume that there exists (X,≈) a subnetwork of (X,∼) with a blinker
that satisfies the Richness Assumption. We have the following
decomposition:

- (∞, 0) and (0,∞) are finite φ-irreducible classes,

- (∞,∞) is an infinite φ-irreducible class,

- (∞,F ) and (F ,∞) are transient and φ-irreducible sets.
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Reformulating the aggregation function

The contagion model becomes deterministic.

An anonymous monotonic aggregation function is necessarily of the
form

A(1Γ(x)∩X ) =

{

1, if |Γ(x)∩X |
γ

≥ q

0, otherwise

for some q ∈ (0, 1).
This yields the contagion model of Morris (2000), where the rule of
contagion with threshold 0 ≤ q ≤ 1 is the following:

Given a configuration X (t) at time t, next configuration X (t + 1) is
the set of agents having a proportion of neighbors in X (t) at least
equal to q:

X (t + 1) =

{

x ∈ X :
|Γ(x) ∩ X (t)|

|Γ(x)| ≥ q

}

The contagion threshold ξ is the largest q such that infection spreads
over X from some finite group X (0). Morris (2000) shows that for
any network, ξ ≤ 1

2 .
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The case of 2-dim mesh with 4 neighbors

Let X ⊆ X, its frontier points are those elements x in X that have
outside and interior neighbors.

Let η(x) := |Γ(x) ∩ X | number of interior neighbors of x

Remarkable configurations (from left to right, X in black or blue):

antenna (x such that η(x) = 1 in blue)

convex corner (x such that η(x) = 2 in blue)

concave corner in blue

isthm (x such that η(x) = 2 in blue)
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Nontrivial absorbing states

Only q = 1
2 or 3

4 lead to non-trivial absorbing states (Morris 2000).
X is an absorbing state for q = 1

2 if and only if X \ X is a possible
absorbing state for q = 3

4 .

For q = 3
4 , each connected component of X should be

of size at least 4,
with no convex corner, no antenna and no isthm

while each connected component of X \ X should be
of size at least 3,
and have no antennas.

Example for q = 3
4
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Other absorbing classes: cycles (periodic trajectories)

Example of a cycle: the 2-dim mesh with 4 neighbors (q = 1
2)

etc.

Proposition 6

Let A be anonymous and Boolean. Then absorbing classes are either

singletons {X}, where X ∈ 2X,

cycles (periodic trajectories) of nonempty pairwise incomparable sets
{X1, . . . ,Xk}
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Conclusion

How the diffusion evolves from a (finite) set of active agents
depends on the aggregation function for some properties and on the
structure of the network for others.

Transience/persistence of a state relies only on the type of diffusion
mechanism, i.e., the aggregation function, without any condition on
the network.

Irreducibility (going from one configuration to another one inside a
class) is closely related to the structure of the graph. We have
proposed a mild sufficient condition on the structure (richness
assumption) to obtain irreducibility.
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Conclusion

We clearly establish a distinction between the probabilistic and the
deterministic mechanism (Morris 2000).

With strict aggregation functions (probabilistic model), no
polarization can occur: all finite configurations fade out.

By contrast, the deterministic model allows the appearance of stable
finite or infinite sets of active/inactive agents, that is, polarization
can appear, and under many different forms.

May we conclude that hesitation is a remedy against polarization?
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