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Social dynamics in the XXI century

Some basic observations:

1 Nowadays, much social dynamics takes place on online social media

2 Online activities influence offline behaviours [Aral (2012)]

3 Online dynamics depends on how digital platforms distribute information
between the users

Actually, online platforms manage huge amounts of information:

recommender systems are indispensable, but also
blamed for producing “information disorders”:

the formation of filter bubbles [Pariser (2011)]

the viral spreading of fake news [Venturini
(2019)]

because platforms want to maximize user engagement
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Dynamical model



A model of feedback interconnection

Case study: a news aggregator that recommends news articles to readers

Recommender System

User
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User model: Opinion dynamics

User

opinion ousr(t)

part(t)

User has a time-dependent opinion ousr(t) ∈ [−1, 1] about an issue

At time t,

user receives an article that has position part(t) ∈ {−1, 1}
user updates her opinion by

ousr(t + 1) = α o0
usr + β ousr(t) + γ part(t) t ∈ N0

where

o0
usr ∈ [−1, 1] is a prejudice that coincides with initial opinion (i.e. ousr(0) = o0

usr)

α, β, γ ≥ 0 and α + β + γ = 1 are weights that describe the relative importance of
prejudice, memory, and new information

Influence model supported by Chaiken (1987); Friedkin and Johnsen (1990)
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User Model: Click Model

User

opinion ousr(t)

part(t) clk(t)

At time t, user also decides whether to read the recommended article or not

The user is subject to a confirmation bias [Nickerson (1998)]: she prefers
contents that are consistent with her opinion ousr

The click decision clk ∈ {0, 1} is stochastic [Dandekar et al. (2013)]:

clk(t) =

{
1 with probability 1

2 + 1
2 ousr(t)part(t)

0 with probability 1
2 − 1

2 ousr(t)part(t)
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Recommender model: solving a bandit problem

The recommender system has the purpose of maximizing clicks

(measured by click-through rate: ctr(t) = 1
t

t−1∑
s=0

clk(s))

The recommender system, therefore, sees
the user as a “two-armed bandit”:

This is a one-armed bandit...

The recommender faces the exploration-exploitation dilemma

of sequential decision problems that arises between staying with the most successful

option so far (i.e. exploitation) and testing the other option (i.e. exploration), which

might become better in the future [Bubeck and Cesa-Bianchi (2012); Li et al. (2010)]

We model balancing exploration and exploitation by an ε-greedy algorithm

part(t) =

{
exploitation with probability 1− ε
exploration with probability ε
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Recommender model: Details of the ε-greedy algorithm

The recommender needs to compute the most successful “arm”

Define counters that track

recommendations r+(t), r−(t)

T+(t) = {s : 0 ≤ s ≤ t − 1 and part(s) = +1} r+(t) = #T+

T−(t) = {s : 0 ≤ s ≤ t − 1 and part(s) = −1} r−(t) = #T−

and ’successes’ a+(t), a−(t): a+(t) =
∑

s∈T+(t)

clk(s) , a−(t) =
∑

s∈T−(t)

clk(s)

Apply the randomized decision rule (with small ε > 0):
if a+(t)

r+(t)
>

a−(t)

r−(t)
then P(part(t) = 1) = 1− ε, P(part(t) = −1) = ε

if a+(t)
r+(t)

=
a−(t)

r−(t)
then P(part(t) = 1) = 0.5, P(part(t) = −1) = 0.5

if a+(t)
r+(t)

<
a−(t)

r−(t)
then P(part(t) = 1) = ε, P(part(t) = −1) = 1− ε
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Detailed feedback interconnection

Recommender System

r+(t), a+(t), r−(t), a−(t)

parameters: ε

User

opinion ousr(t)

parameters: α, β, γ, o0
usr

part(t) clk(t)
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Results: behavior of the interconnection



Example of trajectories: Random recommendations
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Parameters: α = 0.15, β = 0.70, γ = 0.15, o0
usr = 0.30 and ε = 0.50

Left: up to time tmax = 1000. Right: zooming into the first 100 steps.
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Non-random recommendations
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Parameters: α = 0.15, β = 0.70, γ = 0.15, o0
usr = 0.30 and ε = 0.05

Left: up to time tmax = 1000. Right: zooming into the first 100 steps.

Note: Here the most recommended position is +1
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+1-majority and −1-majority trajectories
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Parameters: α = 0.15, β = 0.70, γ = 0.15, o0
usr = 0.30 and ε = 0.05

Left: up to time tmax = 1000. Right: zooming into the first 100 steps.

Note: Here the most recommended position is −1
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Analysis of the closed-loop system

State vector x(t) = [r+(t), r−(t), a+(t), a−(t), ousr(t)]> has closed dynamics from
initial condition x(0) = [0, 0, 0, 0, o0

usr]
>

We could study E[x(t)], but. . .

- the dynamics of E[x(t)] is impractical to write due to the nonlinearities and
dependences between the variables

- since there are two kinds of trajectories, an average would be a poor
description of either

Our approach:

1 We condition on the type of trajectory:
E+[x(t)] := E[x(t) |+1 is more likely]
E−[x(t)] := E[x(t) | −1 is more likely]

2 We write and solve the linear dynamics for E±[x(t)]

We compare analytical E±[x(t)] with simulated time-average x̄(t) = 1
t

t−1∑
s=0

x(s)
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Results (matching analysis with simulations)



Long-time opinions

Opinions split between +1-trajectories and −1-trajectories, concentrating around
the conditional expectations
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Parameters: α = 0.15, β = 0.70, γ = 0.15. Left: ε = 0.50 (random). Right: ε = 0.05

lim
t→∞

E±[ousr(t)] =
αo0

usr ± γ(1− 2ε)

α + γ
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Prevalence of +1 or −1 trajectories

Strong prejudices lead to consistent recommendations
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Parameters: α = 0.20, β = 0.70, γ = 0.10, ε = 0.05.

Dashed blue lines have abscissas − γ
α

(1− 2ε) and γ
α

(1− 2ε)

13 / 18



Effects on the opinions: Polarization

Most trajectories produce more extreme opinions (polarization)
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Parameters: α = 0.20, β = 0.70, ε = 0.05

In shaded areas, the time averaged opinion ousr(tmax) is less extreme than the
prejudice o0

usr, i.e. |ousr(tmax)| ≤ |o0
usr|; in white areas, it is more extreme
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Combined effects on opinions and click-through rate

Recommendations are more effective when opinions are extreme
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Combined effects on opinions and click-through rate II

Effectiveness of recommendations and impact on opinions are positively correlated
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α+γ
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Click-through rate measures effectiveness of recommendations
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Combined effects on opinions and click-through rate III

Randomness parameter ε controls the trade-off between impact on the opinions and
achievable click-through rate
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Conclusion



Conclusion

Summary

This was an analytical model of user-recommender interaction (motivated by
news aggregators), constructed from “prime principles”

The connection between personalized recommendations and distorted opinion
evolution was made apparent

What to do next?

On the sociological/psycological side

validate the user model (and identify its parameters)

interpret and validate the recommender model and its tuning

On the machine learning side

Design optimal recommender algorithms for our closed-loop dynamics

On the modeling side

Model a network of users

Refine recommender model (maybe, include collaborative recommendations)
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