Decision-making in interconnected multiagent networks: roles of frustration and social commitment

Claudio Altafini

Dept. of Electrical Engineering, Linköping University, Sweden

joint work with

Angela Fontan

Dept. of Electrical Engineering, Linköping University, Sweden

Network Dynamics in the Social, Economic, and Financial Sciences, Torino 2019

Outline

- 1. Problem:
 - Government formation dynamics in multiparty democracies
- 2. Model:
 - Network with antagonistic relationships: signed graphs and structural balance
 - Dynamics of opinion forming on signed multiagent networks
 - Computing level of structural unbalance
 - Dynamics of opinion forming in structurally balanced / unbalanced networks

3. Application:

• Government formation process using signed parliamentary networks

1 Motivating problem: Government formation dynamics

- 2 Model: Collective decision on signed networks
- 3 Application: Government formation dynamics

• Government formation in multiparty democracies:

• Government formation in multiparty democracies:

• Sometimes it happens that government negotiation talks take a very long time

Question: what determines the duration of the negotiation phase?

• in political sciences: game-theoretical models of bargaining processes

Question: what determines the duration of the negotiation phase?

• in political sciences: game-theoretical models of bargaining processes

Tasks: develop a dynamical model that can capture and explain the duration of the negotiation phase

1 Motivating problem: Government formation dynamics

- 2 Model: Collective decision on signed networks
- 3 Application: Government formation dynamics

Collective decision models: examples

• animal groups as "multiagent systems"

cross or not cross?

left or right?

Example: bees deciding to relocate to a new hive

Bees decision making as a bifurcation

Example: bees deciding to relocate to a new hive

Seeley et al. Am. Scientist, 2006

N. Leonard. IFAC World Congress, 2014

Distributed decision-making model

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

Gray,...,Leonard. Multi-agent decision-making dynamics inspired by honeybees. IEEE Trans Contr. Netw. Sys. 2018

- states: x = vector of decisions
- negative self-loops: "inertia" of the agents

$$\Delta = \operatorname{diag}(\delta_1, \dots, \delta_n) \qquad \delta_i > 0$$

• interactions: $-\operatorname{graph} \mathcal{G}(A)$ $-\operatorname{influences: sigmoidal functions} \Longrightarrow \operatorname{saturations}$

$$\psi(x) = \begin{bmatrix} \psi_1(x_1) \\ \vdots \\ \psi_n(x_n) \end{bmatrix}, \qquad \frac{\partial \psi_i(x_i)}{\partial x_i} > 0$$

Distributed decision-making model (cont'd)

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

• Laplacian assumption:

 $L = \Delta - A$ is a Laplacian

$$\implies \delta_i = \sum_{j=1}^n a_{ij}$$

 Scalar bifurcation parameter: π = social commitment ≥ 0 Interpretation: π is the amount of interaction among the agents

Distributed decision-making model (cont'd)

Applications

Animal group decision

I.D. Couzin, N. Leonard

Neuronal networks

J. Hopfield

Social Networks

Social networks as (signed) graphs

- Nodes: individuals
- Edges: interactions
- Assumption: agents form their opinion based on the influences of their neighbors
- Choose: plausible form of the dynamics

 $\dot{x} = -\Delta x + \pi A \psi(x)$

Social networks as (signed) graphs

- Nodes: individuals
- Edges: interactions
- Assumption: agents form their opinion based on the influences of their neighbors
- Choose: plausible form of the dynamics

 $\dot{x} = -\Delta x + \pi A \psi(x)$

- Extra assumption: individuals can be "friends" or "enemies"
 - friends (cooperation, alliance, trust): positive edge
 - enemies (competition, rivalry, mistrust): negative edge

 \implies A = "sociomatrix" is a signed matrix

$$A = (a_{ij}) \quad a_{ij} \leq 0$$

Social networks as (signed) graphs

Tasks: predicting the collective decision of the agents in the model

 $\dot{x} = -\Delta x + \pi A \psi(x)$

based on knowledge of A when varying π

- Intuitively: agents form their opinion based on the influences of their neighbors
 - 1. align with opinions of "friends"
 - 2. oppose opinions of "enemies"

$$\operatorname{sign}(\operatorname{\mathsf{Jacobian}}) = \operatorname{sign}(A)$$

Example: consensus

Consensus on nonnegative graphs

 $A \geq 0 \implies$ nonnegative Laplacian

$$L = \Delta - A, \qquad \delta_i = \sum_{j=1}^n a_{ij}$$

- \bullet -L always stable
- $\lambda_1(L) = 0$ always an eigenvalue
- consensus

$$\dot{x} = -Lx$$

Example: consensus

Consensus on nonnegative graphs $A \ge 0 \implies$ nonnegative Laplacian

$$L = \Delta - A, \qquad \delta_i = \sum_{j=1}^n a_{ij}$$

- \bullet -L always stable
- $\lambda_1(L) = 0$ always an eigenvalue
- consensus

$$\dot{x} = -Lx$$

Consensus on signed graphs $A \leq 0 \implies$ signed Laplacian

$$L_s = \Delta - A, \qquad \delta_i = \sum_{j=1}^n |a_{ij}|$$

- $-L_s$ stable or asymptotically stable
- $\lambda_1(L_s) = 0$ may or may not be an eigenvalue
- consensus

$$\dot{x} = -L_s x$$

Structural balance: the enemy of my enemy ...

• in social network theory: certain social relationships (represented as signed graphs) are "more stressful" than others

F. Heider. Attitudes and cognitive organization. J Psychol. 1946

• generalization to any signed graph \implies structural balance

Structural balance

Definition A signed graph $\mathcal{G}(A) = \{\mathcal{V}, \mathcal{E}, A\}$ is said structurally balanced if \exists partition of the nodes $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_1 \cup \mathcal{V}_2 = \mathcal{V}, \mathcal{V}_1 \cap \mathcal{V}_2 = 0$ such that

- $a_{ij} \geqslant 0 \; \forall \; v_i, \, v_j \in \mathcal{V}_q$,
- $a_{ij} \leqslant 0 \ \forall \ v_i \in \mathcal{V}_q, \ v_j \in \mathcal{V}_r, \ q \neq r$.

It is said structurally unbalanced otherwise.

- two individuals on the same side of the cut set are "friends"
- two individuals on different sides of the cut set are "enemies"

D. Cartwright and F. Harary, Structural balance: a generalization of Heider's Theory, Psychological Review, 1956. D. Easley and J. Kleinberg, Networks, Crowds, and Markets. Reasoning About a Highly Connected World, Cambridge, 2010

Examples

Two-party parliamentary systems

Team sports

International alliances

Structural balance

Lemma A signed graph $\mathcal{G}(A)$ is structurally balanced *iff* any of the following equivalent conditions holds:

- 1. all cycles of $\mathcal{G}(A)$ are positive;
- 2. \exists a diagonal signature matrix $D = \text{diag}(\pm 1)$ such that DAD is nonnegative;
- 3. the signed Laplacian L_s has $\lambda_1(L_s) = 0$

Distributed decision-making (signed) model

$$\dot{x} = -\Delta x + \pi A \psi(x)$$

- states: x = vector of decisions
- self-loops: "inertia" of the agents

$$\Delta = \operatorname{diag}(\delta_1, \dots, \delta_n) \qquad \delta_i = \sum_{j=1}^n |a_{ij}|$$

• interactions: $- \operatorname{graph} \mathcal{G}(A)$ - A symmetrizable $\Longrightarrow \lambda_i(A)$ real - influences: sigmoidal functions \Longrightarrow saturations

$$\psi(x) = \begin{bmatrix} \psi_1(x_1) \\ \vdots \\ \psi_n(x_n) \end{bmatrix}, \qquad \frac{\partial \psi_i(x_i)}{\partial x_i} > 0$$

Opinion forming in signed social networks: model

• "normalized" form:

$$\dot{x} = \Delta \big(-x + \pi \underbrace{H}_{\Delta^{-1}A} \psi(x) \big)$$

• Laplacian assumption:

$$\delta_i = \sum_j |a_{ij}| \implies 1 = \sum_j |h_{ij}|$$

- $\implies L_s = \Delta A \text{ is a signed Laplacian}$ $\implies \mathcal{L}_s = I H \text{ is "normalized" signed Laplacian}$
- Scalar bifurcation parameter: π = social commitment ≥ 0 Interpretation: π is the amount of interaction among the agents

Opinion forming on structurally balance social networks $\dot{x} = \Delta \left(-x + \pi H \psi(x) \right)$

Fontan, Altafini, "Multiequilibria analysis for a class of collective decision-making networked syst.", IEEE TCNS, 2018.

Opinion forming on structurally balance social networks $\dot{x} = \Delta \left(-x + \pi H \psi(x) \right)$

Bifurcation diagram (x_i, π, x_j)

first bifurcation:
$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L}_s)} = 1$$

Fontan, Altafini, "Multiequilibria analysis for a class of collective decision-making networked syst.", IEEE TCNS, 2018.

Opinion forming on structurally balance social networks $\dot{x} = \Delta \left(-x + \pi H \psi(x) \right)$

second bifurcation:
$$\pi_2 = \frac{1}{1 - \lambda_2(\mathcal{L}_s)}$$

 $(\lambda_2(\mathcal{L}_s) = \text{ algebraic connectivity})$

Fontan, Altafini, "Multiequilibria analysis for a class of collective decision-making networked syst.", IEEE TCNS, 2018.

Theorem: Given the system

 $\dot{x} = \Delta \left(-x + \pi H \psi(x) \right)$

for which $\exists D \text{ s.t. } DHD$ is nonnegative and irreducible, then:

- for $\pi<\pi_1=\frac{1}{1-\lambda_1(\mathcal{L}_s)}=1,\ x^*=0$ is a globally asymptotically stable equilibrium
- when $\pi = 1$, the system undergoes a pitchfork bifurcation, with x^* becoming unstable and two new locally asymptotically stable equilibria $x^*_{1,2} \in D\mathbb{R}^n_{\pm}$ appear;
- when $\pi = \pi_2 = \frac{1}{1 \lambda_2(\mathcal{L}_s)}$, the system undergoes a second pitchfork bifurcation, and new equilibria appear.

Proof:

- Singularity analysis of bifurcations via Lyapuonv-Schmidt reduction;
- Perron-Frobenius theorem

Proof: First bifurcation at $\pi = 1$:

• Lyapunov-Schmidt reduction:

$$\Phi(x) = -x + \pi H \psi(x) = 0$$

- at $\pi = 1$ the Jacobian $J = \frac{\partial \Phi(0,1)}{\partial x} = -I + H$ is singular
- w, v =left, right eigenvector of J relative to 0
- $E = I vw^T$ = projection operator onto range $(J) = (\operatorname{span}(w))^{\perp}$
- Split x into x = (r, y)

$$r = Ex \in (\operatorname{span}(w))^{\perp}$$
 $y = (I - E)x \in \operatorname{span}(w)$

- split $\Phi(x)$ accordingly

$$E\Phi(x) = 0 \qquad (I - E)\Phi(x) = 0$$

• implicit function theorem:

$$E\Phi(x) = 0 \implies r = R(y,\pi)$$

• \implies (1-dim) center manifold

$$g(y,\pi) = w^T (I - E) \Phi(y + R(y,\pi),\pi) = 0$$

• enough to check the partial derivatives

$$g = g_y = g_{yy} = g_\pi = 0, \qquad g_{yyy}g_{\pi y} < 0$$

 \implies recognition problem for a pitchfork bifurcation is solved.

Second bifurcation at $\pi_2 > 1$: same procedure for the Fiedler eigenvector

• enough to check the partial derivatives

$$g = g_y = g_{yy} = g_\pi = 0, \qquad g_{yyy}g_{\pi y} < 0$$

 \Longrightarrow recognition problem for a pitchfork bifurcation is solved.

Second bifurcation at $\pi_2 > 1$: same procedure for the Fiedler eigenvector

• for $\pi > \pi_2$: many new equilibria (stable/unstable)

Example n = 20

- n. of orthants: $>10^6\,$
- $\bullet\,$ n. of equilibria: grows exponentially with n
- numerical analysis: 500 values of $\pi,\,10^4$ trials each
- location of new equilibria \bar{x} for all identical $\psi_i \\ \|\bar{x}\| \leq \|x^*\|$

Structurally unbalanced graphs

- A signed graph $\mathcal{G}(A)$ in general is not structurally balanced

Proposition A signed graph $\mathcal{G}(A)$ is structurally unbalanced *iff* any of the following equivalent conditions holds:

- 1. not all cycles of $\mathcal{G}(A)$ are positive;
- 2. No diagonal signature matrix $D = \text{diag}(\pm 1)$ exists such that DAD is nonnegative;
- 3. the signed Laplacian \mathcal{L}_s has $\lambda_1(\mathcal{L}_s) > 0$

$\mathcal{G}(H)$ structurally balanced vs. unbalanced

Example: parliamentary system

Two-party system $\mathcal{G}(H)$ structurally balanced

Three-party system $\mathcal{G}(H)$ structurally unbalanced

$\mathcal{G}(H)$ structurally balanced vs. unbalanced

Example: football

Normal football $\mathcal{G}(H)$ structurally balanced

Three-sided football $\mathcal{G}(H)$ structurally unbalanced

- much more tactical and difficult to play than normal football
- plenty of team "alliances" and "betrayals" during the game
- "organized confusion"

$\mathcal{G}(H)$ structurally balanced vs. unbalanced

Example: football

Normal football $\mathcal{G}(H)$ structurally balanced

Three-sided football $\mathcal{G}(H)$ structurally unbalanced

- How "distant" is a graph from structural balance?
- intuitively: the least number of edges that must be removed (or switched of sign) in order to get a structurally balanced graph

- computation is NP-hard
- heuristics:
 - $\bullet \quad \text{direct approach: counting cycles } \longrightarrow \text{ unfeasible}$
 - in statistical physics: computing the ground state of an Ising spin glass
 - in computer science: MAX-CUT or MAX-XORSAT problems

• To measure distance to structural balance

Definitions

• Frustration = minimum of an energy-like functional

$$\epsilon(H) = \min_{\substack{D = \text{diag}(d_1, \dots, d_n) \\ d_i = \pm 1}} \frac{1}{2} \sum_{i \neq j} \left(|\mathcal{L}_s| - D\mathcal{L}_s D \right)_{ij}$$

• Algebraic conflict = smallest eigenvalue of \mathcal{L}_s

$$\xi(H) = \lambda_1(\mathcal{L}_s)$$

Example: Erdős-Rényi networks with varying amount of negative edges

• Algebraic conflict / Frustration index

• $\epsilon(H)$ and $\lambda_1(\mathcal{L}_s)$ are proportional

 $\epsilon(H) \approx \lambda_1(\mathcal{L}_s)$

• both grow with $\beta,$ then saturate at around $\beta\approx 0.5$

Opinion forming on structurally unbalance social networks $\dot{x} = \Delta (-x + \pi H \psi(x))$

first bifurcation:
$$\pi_1 = \frac{1}{1 - \lambda_1(\mathcal{L}_s)}$$

Fontan, Altafini, "Achieving a decision in antagonistic multiagent networks", CDC, 2018.

Opinion forming on structurally unbalance social networks $\dot{x} = \Delta (-x + \pi H \psi(x))$

Fontan, Altafini, "Achieving a decision in antagonistic multiagent networks", CDC, 2018.

Opinion forming on structurally unbalance social networks $\dot{x} = \Delta (-x + \pi H \psi(x))$

Fontan, Altafini, "Achieving a decision in antagonistic multiagent networks", CDC, 2018.

Summary

SIGNED GRAPH DYNAMICAL SYSTEM

- $\lambda_1(\mathcal{L}_s)$ grows with the frustration
- $\pi_1 = rac{1}{1-\lambda_1(\mathcal{L}_s)}$ grows with $\lambda_1(\mathcal{L}_s)$
- the larger π_1 , the larger is the social effort needed to achieve a decision
- the higher the frustration, the more difficult it is to achieve a nontrivial decision

1 Motivating problem: Government formation dynamics

- 2 Model: Collective decision on signed networks
- 3 Application: Government formation dynamics

Application: Government formation process

Question: Is the process of government formation "sensitive" to the amount of frustration?

- 1. quantification of "social effort": days to government = n. of days required to get a confidence vote from parliament
- 2. build a parliamentary network for a multiparty parliament:

- 1. quantification of "social effort": days to government = n. of days required to get a confidence vote from parliament
- 2. build a parliamentary network for a multiparty parliament: Scenario I:
 - all MPs of one party are friends (+1 edge)
 - all MPs from different parties are rival (-1 edge)

 \Longrightarrow fully connected block-structured unweighted signed graph \Longrightarrow frustration can be computed exactly

• Data analyzed: 29 European nations

- datasets: Manifesto Project, Parliaments and Governments database, Wikipedia, Chapter Hill surveys, etc.
- time span: 1980-2018

• Example: Germany

• Results: correlation between frustration and days-to-government (mean for each nation)

• How about Italy?

• Refinements: choose edge weights in a more appropriate way

• Example: Italy

• Energy of the "Ising spin glass"

$$e(D) = \frac{1}{2} \sum_{i \neq j} \left(|\mathcal{L}_s| - D\mathcal{L}_s D \right)_{ij}$$

 $D = diagblock(\pm 1)$ "spin up", "spin down"

- changing D: e(D) changes
- frustration corresponds to the energy of the "ground state" D_{best} :

$$\epsilon(H) = e(D_{\text{best}})$$

+ "true government" corresponds to $D_{\rm gov}\text{, of energy}$

$$e(D_{\text{gov}}) = \frac{1}{2} \sum_{i \neq j} \left(|\mathcal{L}_s| - D_{\text{gov}} \mathcal{L}_s D_{\text{gov}} \right)_{ij}$$

+ "true government" corresponds to $D_{\rm gov}\text{, of energy}$

$$e(D_{\text{gov}}) = \frac{1}{2} \sum_{i \neq j} \left(|\mathcal{L}_s| - D_{\text{gov}} \mathcal{L}_s D_{\text{gov}} \right)_{ij}$$

Question: how close is $e(D_{gov})$ to $e(D_{best})$?

Example: Italy

• Energy gap:
$$\eta_{\text{gov}} = 1 - \frac{e(D_{\text{gov}}) - e(D_{\text{best}})}{\max_D e(D) - e(D_{\text{best}})}$$

Government composition

Question: can we predict successful government coalitions?

- + $\mathcal{P}_{\rm best,maj} =$ group of parties forming a majority in the ground state
- + $\mathcal{P}_{\rm gov} =$ group of parties forming a majority in the ground state

$$\rho_{\rm gov} = \frac{\operatorname{card}(\mathcal{P}_{\rm best,maj} \cap \mathcal{P}_{\rm gov})}{\operatorname{card}(\mathcal{P}_{\rm gov})}$$

Government composition

• complication: minority governments...

Pan-European yearly trends

• Data from different countries can be compared after normalization

- In the last 40 years, the duration of the post-election government negotiation phase has more than doubled
- Why? Perhaps because the frustration of our parliamentary networks has nearly doubled...

Conclusion

- Aim: provide a dynamical model able to explain the dynamics of government formation in multiparty democracies
- Model: collective decision making on signed graphs
 - structurally balanced graph
 - more predictable dynamics (monotone system)
 - low "social commitment" for bifurcation
 - structurally unbalanced graph:
 - amount of frustration influences the decision process
 - $-\,$ the higher frustration, the higher is the social commitment for bifurcation
- Duration of government formation process correlates strongly with the frustration of the parliament network

Thank you!

Banksy, Devolved Parliament, 2009

Duration of government negotiations

Frustration (Scenario I)

Pan-European yearly trends

Fraction of majority governments

Italy: energy of Lower chamber vs Senate

www.liu.se

