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Pietro S. Salizzoni (École Centrale de Lyon)

Candidata
Camilla Viazzo

Marzo 2022



Acknowledgements

First and foremost, I would like to thank my tutors for the opportunity to
work on this thesis, as well as Luca Mercalli for providing us with all the
data for the series of Turin. A special thanks goes to prof. Ridolfi for his
guidance and support.

I am also extremely grateful to all the people that accompanied me in these
months regardless of the distance, in particular Erwin.
Last but not least, I would like to thank Yun for everything.

1



Contents

1 Introduction 4

2 Climatic series 5
2.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Homogenization . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Break detection methods . . . . . . . . . . . . . . . . 7

2.2 Meteoclimatic indicators . . . . . . . . . . . . . . . . . . . . . 12
2.3 Time series reversibility . . . . . . . . . . . . . . . . . . . . . 13

3 Complex networks 15
3.1 Elements of graph theory . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Measures and indices . . . . . . . . . . . . . . . . . . . 16
3.2 Visibility Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Irreversibility and Kullback-Leibler divergence . . . . 20
3.2.2 Motifs and system dynamics . . . . . . . . . . . . . . 22

4 Case study 1: Turin 1753-2020 26
4.1 Series description . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Homogenization . . . . . . . . . . . . . . . . . . . . . 28
4.2 Preliminary analysis . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Visibility graphs . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Degree metrics . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Motif detection . . . . . . . . . . . . . . . . . . . . . . 46

5 Case study 2: Prague 48
5.1 Series description . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Homogenization . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 Missing values . . . . . . . . . . . . . . . . . . . . . . 50
5.1.3 Preliminary analysis . . . . . . . . . . . . . . . . . . . 50

5.2 Visibility graphs . . . . . . . . . . . . . . . . . . . . . . . . . 54

2



5.2.1 Degree metrics . . . . . . . . . . . . . . . . . . . . . . 54
5.2.2 Assortativity . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3 Time reversibility . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Motif detection . . . . . . . . . . . . . . . . . . . . . . 60

6 Case study 3: Bologna 62
6.1 Series description . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.1 Preliminary analysis . . . . . . . . . . . . . . . . . . . 62
6.2 Visibility graphs . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2.1 Degree metrics . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Assortativity . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Time reversibility . . . . . . . . . . . . . . . . . . . . . 69
6.2.4 Motif detection . . . . . . . . . . . . . . . . . . . . . . 73

7 Discussion and Conclusions 75
7.1 Case study comparisons . . . . . . . . . . . . . . . . . . . . . 75
7.2 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3



Chapter 1

Introduction

Long-term instrumental daily air temperature series are fundamental for
climate monitoring, climate change detection and attribution, climate mod-
elling and to assist climate action and adaption policies [16]. During the
reconstruction of these series, it is crucial to adjust for missing values and
inhomogeneities caused by nonclimatic factors and accumulated over time;
this is generally achieved by combining statistical analysis with the available
metadata and historical records available.
In recent years a bridge between time series analysis and complex networks
has been proposed to characterize and model the macroscopic and micro-
scopic structure of complex systems in nature, technology, and society [30],
bypassing some of the challenges that characterize traditional approaches. A
rather intuitive method to handle scalar time series is the visibility graph, in-
troduced by Lacasa et al. [12]; it can be used to evaluate time irreversibility
[14] and perform robust discrimination between different types of complex
dynamics through motif analysis [10],[28].

The thesis can be divided in two sections: the first one (corresponding to
chapters 2 and 3) gives a brief introduction to climate analysis and lays the
theoretical foundation for the analysis and the results discusses in the second
one. In particular section 2.1.1 introduces the homogenization techniques
that will be further discussed in the presentation of the case studies, and
chapter 3 introduces the visibility graphs. The main focus is the applica-
tion of the visibility graphs to three long-term climatic series, presented in
chapters 4-6.
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Chapter 2

Climatic series

Climate change refers to long-term shifts in temperatures and weather pat-
terns. These shifts may be attributed to natural phenomena, such as varia-
tions in the solar cycle, but since the 1800s human activities have been the
main driver of climate change, primarily due to burning fossil fuels like coal,
oil and gas. The prevalent anthropogenic effect is the warming caused by
the increase in greenhouse gases [IPCC 2007].

Volcanic eruptions

Volcanic activity is considered to be the primary cause of interdecadal vari-
ability of the climate [17]. The impact of large-scale volcanic eruptions on
the climate is caused by the emission in the stratosphere of huge amounts
of dust and sulfur dioxide, that are transported by the wind on the entire
hemisphere - or the planet, if the volcano is located in the tropical region.
The aerosol changes the energy flux in the atmosphere by diffusing part of
the incident solar radiation, without interfering with the radiation emitted
from the Earth: this phenomenon, called radiative forcing, results in an in-
crease in temperature in the stratosphere and a cooling of the surface of the
Earth and the low troposphere. The decrease in temperature is maximum
in the first year after the eruption, and it lasts generally between one and
three years, after which the aerosol falls again in the troposphere and on the
ground through precipitations.
An overview of the major volcanic eruptions may help to interpret anomalies
in the average yearly temperatures of the series considered. The eruption of
the Tambora in Indonesia in 1815, for example, was the greatest eruption
in the modern age, and caused 1816 to be the “Year Without a Summer” in
most of the North hemisphere; the combination of low temperatures, huge
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storms and abnormal rainfall resulted in an agricultural disaster. To give
a perspective on the intensity of the phenomenon, its radiative forcing is
estimated to be −4W/m2 [29], whereas the radiative forcing associated with
the increase in greenhouse gases since the Pre-Industrial Era - net of aerosol
and clouds - is estimated to be between +1.5W/m2 and +2.8W/m2.

2.1 Preprocessing

The first consistency checks that have to be run to detect potential errors
in the data are internal, temporal, spatial and summarization [27]. The
first one checks for consistency with definitions - e.g. the maximum value
has to be always greater or equal than the corresponding minimum value -,
physical bounds - e.g. precipitations cannot be negative - and on a deeper
level relies on the physical relationships among climatological elements. The
temporal consistency check evaluates the relationship of a data point with
the preceding and successive one, flagging changes suspiciously far from the
expected amount. Similarly, the spatial consistency test compares neigh-
bouring observations within a climatologically similar area recorded at the
same time and flags the outliers. Summarization tests can be used for ex-
ample to cross-check data summaries with different time aggregation. The
entries flagged as errors lead to gaps in the data, and their value is estimated
during the process of homogenization of the series.

2.1.1 Homogenization

An issue particularly prevalent in long climatic series is the presence of in-
homogeneities, caused mainly by the relocation of meteorological stations,
replacement or recalibration of instrumentation, and a change in the sur-
rounding environment, due to urban expansion for example. The induced
shifts (or breaks) often have the same magnitude of the climate signal, such
as long-term variations, trends or cycles, and might lead to wrong conclu-
sions about the evolution of the climate[3]. In order to obtain a homogeneous
climate series, i.e. that is only influenced by the variations in climate, it is
necessary to perform gap completion, break detection and correction.
The availability of metadata can be crucial to correctly identify breaks, es-
timate corrections and validate results, but especially for older records it
may be incomplete. In section 4.1 and 5.1 two possible homogenization ap-
proaches are presented: in the first one the metadata available is taken into
account, whereas the second application is blind to metadata and operates
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automatically. This may be preferable when the dataset considered is par-
ticularly big (e.g. all the major European meteorological stations) and the
metadata is insufficient. Here is a brief introduction to the methods that
will be used for the homogenization of the series in this case study.

EM algorithm

The Expectation Maximization algorithm, proposed by Dempster et al.
(1977), is a two-step iterative method that can be used to estimate missing
data in time series[7].
Let x and z the observed and missing data respectively, θ be the unknown
parameter vector and θn its estimate at iteration n. The E-step calculates
the conditional expectations of missing data given observed data and esti-
mates of model parameters as:

Q(θ|θn) = EZ|x,θn [logL(θ;x, z)], (2.1)

where L(θ;x, z) is the likelihood function. The M-step then finds the esti-
mates of the model parameter that maximize the complete-data log likeli-
hood function from the E-step:

θ∗ = argθ maxQ(θ|θn), (2.2)

and the process is iterated until convergence.

2.1.2 Break detection methods

The break detection methods can be classified in three categories: likelihood-
based, linear regression-based, and nonparametric. They generally rely on
the assumption that the difference between the series under study and a
reference series is fairly constant in time [3], and most of the breaks (also
referred to as shifts) are step-like changes which typically alter only the
average. Given K − 1 changepoints occurring at times {τ1, ..., τK−1}, with
K unknown, the time series can be divided into K homogeneous segments
in terms of statistical features, such as the mean; in this sense changepoint
detection and time series segmentation are equivalent problems.
A brief overview of some of the most common changepoint detection methods
is presented.

7



Prodige: Caussinus and Mestre

The Caussinus and Lyazrhi’s[15] procedure for break detection is based on
the pairwise comparison of the test series with a set of reference series from
the same climatic area. If a changepoint remains constant through the com-
parisons, it can be attributed to the test series; in this way it is possible
to distinguish the breaks detected due to an unreliable reference series from
those of the test series.
Let X be a matrix with Xij the observation at time i ∈ {1, ..., n} of the
series at station j ∈ {1, ..., p}; given the series j, let kj and lj the number
of changepoints and outliers, and Kj = ({0, τ1,j , ..., τkj ,j , n}, {δ1,j , ..., δlj ,j})
their respective positions1. Let Ljh = [τh−1,j+1, τhj ,j ] the level h: by defini-
tion, each level is an homogeneous subperiod of the series. The observations
are assumed to be the sum of a climate effect µi at time i, a station effect
νjh of station j for the level Ljh and random white noise; the station effect
is piecewise constant between two shifts, and - conditionally to the climate
signal - the disturbances can be considered independent [3] .
The data is described by the linear model

E(Xij) = µi + νjh(i,j)

V ar(X) = σ2Inp,
(2.3)

where the notation h(i, j) remarks that level h for observation Xij depends
both on time i and station j. An additional parameter is added to the mean
if the data indexed by (i, j) are outliers. The parameters are identified by∑n

i=1 µi = 0.
Let K be the union of the positions of changepoints and outliers of all series,
and define k and l as the total number of changepoints and outliers respec-
tively; assuming normality of the observations, the penalized log-likelihood
procedure is

select HK∗ s.t. K∗ = arg min
K

CK(X), (2.4)

1In this simplified notation, τ0,j = 0 and τkj+1,j = n

8



where C∅(X) = 0 and

CK(X) = ln

1−

p∑
j=1

n∑
i=1

[
(µ̂Ki + ν̂Kjh(i,j))

2 − (µ̂∅i + ν̂∅j )2
]

p∑
j=1

n∑
i=1

[
Xij − (µ̂∅i + ν̂∅j )

]2


+
2(k + l)

np−m− p− n+ 1
ln (np−m),

where m is the number of missing values, µ̂∅i and ν̂∅j are the least square

estimates under the null hypothesis K = ∅ and µ̂Ki and ν̂Kjh(i,j) are the
estimates under any alternative hypothesis HK .
The imputation of missing data is given by X̂ij = µ̂i + ν̂jh(i,j), and each
observation Xij ∈ Ljh (1 ≤ h ≤ kj + 1) is corrected by

X∗ij = Xij − ν̂K
∗

jh(i,j) + ν̂K
∗

j,kj+1. (2.5)

It is important to note that the number of hypothesis rises very fast with the
length of the series n and the number of accidents k+l, rendering a näıve im-
plementation of the model unfeasible. Assuming the normality hypothesis,
Mestre [18] proposed a stepwise algorithm that limits the detection of new
accidents at every step to one outlier or one or two breaks; in this way the
computation time scales quadratically with n. A more general approach to
reduce the number of hypothesis to test in (2.4) consists in the preselection
of changepoints and outliers: this is done by comparing the series pairwise
to identify the most probable breaks, correcting the series and iterating the
process two or three times to ensure good results.

RHtest: Wang et al.

The method proposed by Wang et al.[25] focuses on the detection of un-
documented shifts in the mean. Differently from the approach discussed in
the previous section, the series is assumed to have at most one changepoint
(AMOC), and multiple breaks can be detected through a recursive testing
algorithm. The changepoint in the series {Xt}nt=1 is detected by testing the

null hypothesis H0 : {Xt}
iid∼ N (µ, σ2) against the alternative

Ha :

{
{Xt}

iid∼ N (µ1, σ
2), t = 1, ..., k

{Xt}
iid∼ N (µ2, σ

2), t = k + 1, ..., n
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with µ1 6= µ2 and t = k the candidate changepoint.
The most probable changepoint is associated with the maximum of a log
likelihood ratio, or equivalently[4]

Tmax = max1≤k≤n−1T (k), (2.6)

with

T (k) =
1

σ̂k

[
k(n− k)

n

]1/2
|X̄1 − X̄2|,

X̄1 =
1

k

k∑
t=1

Xt, X̄2 =
1

n− k

n∑
t=k+1

Xt,

σ̂2k =
1

n− 2

[
k∑
t=1

(Xt − X̄1)
2 +

n∑
t=k+1

(Xt − X̄2)
2

]
.

This test is called the maximal (two-sample) t test, and it is equivalent to
the standard normal homogeneity test (SNHT) proposed by Alexandersson
(1986). Its accuracy decreases significantly for points at the extremities of
the time series, as the difference in size of the two samples increases and the
false alarm rate (FAR) increases with respect to points in the middle of the
series. This phenomenon corresponds to a U-shaped curve for the effective
level of significance of the test FARα(k) ∼ k, with k = 1, ..., n− 1 and α the
level of significance.
To get a more even FAR, an empirical penalized maximal t test (PMT) is
proposed:

PTmax = max
1≤k≤n−1

[P (k)T (k)], (2.7)

where P (k) is an empirical penalty function that depends heavily on the
series length n (for more details, check Wang et al.[25]). This test tends to
overpenalize slightly the test statistic for the end points of very long time
series (n ≥ 500), but in general it evens out considerably the FAR over the
series w.r.t. the maximal t test and the SNHT.

GAHMDI: Toreti et al.

The genetic algorithm hidden Markov models for detection of inhomogeneities
(GAHMDI) in this framework assumes the discrete time process {Xt}Nt=1 de-
pendent on the state process {St}Nt=1: this is an unobservable process taking
values in {1, ...,K} that can be considered as the set of nonclimatic factors
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affecting the measured values of the time series. Xt are assumed condition-
ally independent with a distribution (given St) that is Gaussian, with mean
µSt and variance σ2St . The state process is a Markov chain with transition
matrix P and initial state distribution π = (π1, ...πK), where πi = P(S1 = i).
A left-to-right hidden Markov model (HMM) assumes π = (1, 0, ...0) and
pi,j = 0 ∀j < i, which implies that the process cannot come back to a
previous condition2; moreover pi,i 6= 0 and pi,i+1 = 1− pi,i ∀i = 1, ...K.
The set of parameters λ = {K,P, µ1, ...µk, σ1, ...σK} is estimated from an
initial guess by fixing K ∈ {1, ...Kmax} a priori and approximating the model
likelihood

L(λ) =
∑
S

N∏
t=1

exp

[
−1

2

(
Xt−µSt
σSt

)2]
σSt
√

2π
pSt−1,St

with an expectation-maximization approach, namely the Baum-Welch algo-
rithm [26]. Given the set of estimated parameters λ̂, the optimal segmen-
tation of {Xt} is estimated by the Viterbi algorithm: this is based on the
term δt(i) = maxs1,...st−1 L2(s1, ..., st−1, st = i, x1, ..., xt|λ̂), that maximizes
the conditional likelihood L2 of the state sequence up to time t and ending
in a state equal to i [24].
To get global maxima from the Baum-Welch algorithm, the initial state se-
quence is estimated by a genetic algorithm (GA) that preserves the HMM
structure during the process of crossover and mutation and rejects solutions
with any segment less than 4 steps long. If a simplified HMM is used[11],
µk and σk are estimated by the mean and standard deviation, respectively,
of all the observations belonging to the state k; moreover the diagonal ele-
ments of P are equal to the number of time steps without change in the state
sequence divided by the total number of time steps, with the exception of
pk,k = 1. Therefore the evaluation function of the GA is the joint likelihood
of the state sequence and the observations:

L1(λ) =

N∏
t=1

(
√

2πσSt)
−1pSt−1,St

e−(xt−µst )
2/σ2

st , (2.8)

2Both this constraint and the Gaussian condition can be relaxed.
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with p0,1 = 1. Imposing pi,i = p ∀i ≤ K − 1, where p is the first element
on the main diagonal of P, we obtain

logL1(λ) =
N∑
t=1

log

(
1√

2πσst

)
−

N∑
t=1

(xt − µst)2

2σ2st
+ (K − 1) log (1− p)

+ [(N − 1)− (K − 1)− (|CK | − 1)] log (p),
(2.9)

where CK = {st|st = K} and |CK | is the cardinality of the set.
The GAHMDI is applied for K = 1, ...,Kmax, stopping the procedure when
the best state solution has at least one state whose time duration is less
than four steps. The optimal number of segments is chosen by minimizing
an objective function of the form -log(likelihood)+penalty.

2.2 Meteoclimatic indicators

The computation of meteoclimatic indicators provides an intuitive summa-
rization of data and can be helpful to extract and present information about
a series. The most common time aggregation is annual, but for certain indi-
cators also monthly or decadal aggregations may be of interest. The quality
of the input data can be validated by a weak climatological check and an
internal consistency check; the first one verifies if the value of the variable
lies between a minimum and maximum acceptation threshold, defined a pri-
ori; in Italy, for example, the maximum and minimum temperature values
should not be lower than -29°C or higher than 49°C according to the SCIA
guidelines[1]. The internal consistency check, instead, takes into considera-
tion multiple variables at the same time point and checks for inconsistencies
between their values.
As a result of these checks, the indicator can be paired with a validity flag
that is equal to 1 when the indicator is valid, and 0 otherwise. Generally it
is sufficient to have at least 75% of valid input data to assign a valid flag,
but indicators such as extremes, number of values above/below a threshold,
and the cumulative sum of a certain quantity over a period of time are par-
ticularly susceptible to gaps in the data, so the threshold of valid data has
to be raised to 90%.

Given daily observations of minimum (maximum) temperature, one can
compute their mean and standard deviation, find the date of minimum (max-
imum) and its value, count the number of days above a threshold and the
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number of frost days. Moreover these data can be used to calculate the
average daily temperature series and the daily thermal excursion.
It may also be of interest to study the persistence, i.e. the number of consec-
utive days with values withing a certain range: in the case of temperatures,
the intervals (in degree Celsius) that characterize the symbolization of the
series are defined by the SCIA [1] as −10 < Tmax ≤ −5, −5 < Tmax ≤ 0,
..., 35 < Tmax ≤ 40, Tmax > 40 for maximum temperature and Tmin ≤ −20,
−20 < Tmin ≤ −15, −15 < Tmin ≤ −10, ..., 15 < Tmin ≤ 20 for minimum
temperature.

Heat waves

A heat wave is a period of prolonged abnormally high surface temperatures
relative to those normally expected. According to the World Meteorological
Organization (WMO) it is defined as a period of at least 6 consecutive days
with maximum temperature above the 90th percentile of that day w.r.t. a
30-year reference period (1981-2010 or 1991-2020). Depending on the ap-
plication of interest, though, the definition can vary significantly; in many
instances it is not even consistent between different countries. In the con-
text of health protection, for example, temperature and humidity data are
generally combined to estimate the apparent temperature perceived by the
human body and the heat stress [21], in order to devise a heat-health warn-
ing system (HHWS) to advise vulnerable sections of the population and
prevent hospitalizations.
In the following case studies the major heat waves are detected as the 6
hottest consecutive days of the year, provided that the maximum temper-
ature is always above a threshold of 28°C; each one is also paired with the
average maximum temperature over the 6-day period to quantify its inten-
sity. This is a definition used by Mercalli [17] in the analysis of the series of
Turin, and it is chosen for its simplicity.

2.3 Time series reversibility

A stationary process is time reversible if the joint probability distribution
of the forward and backward process are statistically equivalent. More for-
mally, given a time series Σ = {x1, x2...xN}, and its corresponding backward
series Σ∗ = {xN , xN−1...x1}, the forward and backward joint distributions
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will be PF (N) := P (x1, x2, ...xN ) and PB(N) := P (xN , xN−1, ...x1) respec-

tively; Σ is statistically time reversible if and only if PF (m)
d
= PB(m),

∀m = 1, ...N , where
d
= implies equality in a distributional sense.

Examples of reversible processes are linearly correlated stochastic processes
and conservative chaotic systems; on the other hand, nonlinear stochastic
processes and dissipative chaotic processes are generally irreversible. More-
over a thermodynamic interpretation [22] links the amount of irreversibility
of a trajectory Σ to the amount of entropy that the underlying system is
producing.
The typical approaches to evaluate time reversibility are based on a sym-
bolization of the series and a statistical comparison of the symbol strings
occurrence in the forward and backward series, or a compression algorithm
[20]. The result depends on additional parameters such as the range par-
titioning or the size of the symbol alphabet; in particular long time series
are required to estimate irreversibility in (discrete) stationary signals when
the alphabet is large. Another issue that can arise is determined by the
local nature of the symbolization process, as the presence of multiple scales
could be swept away during the symbolization process (unless multi-scale
algorithms are considered).
An alternative approach based on the visibility graphs and the Kullback-
Leibler divergence has been proposed by Lacasa et al. [14] and will be
discussed in more detail in section 3.2.1.
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Chapter 3

Complex networks

3.1 Elements of graph theory

A graph G = (V, E ,W) is defined as a set of nodes or vertices V linked to
each other by edges (or links) in the set E ⊆ V × V; each edge is defined
by the nodes it connects. In the case of a directed graph, an edge is defined
as an ordered pair of nodes, referred to as outgoing and incoming node
respectively; if the graph is instead undirected, the link is bilateral and
defined by an unordered pair of nodes. An edge that joins a node to itself
is called a loop. W is a set of weights associated to the links; in the case of
an unweighted graphW coincides with the adjacency matrix, therefore each
nonzero element is equal to 1 and represents an existing link. A simple graph
is undirected, unweighted, with no loops and no multiple edges, meaning that
for each pair of nodes there can be at most one edge.
A walk from node i to node j is a sequence γ = (i = i0, i1, ..., j = il) for
which (ih−1, ih) ∈ E ∀h = 1, ...l; if such walk exists, node j is reachable
from node i. A walk γ is a path from node i to j if it also holds that
ih 6= ik ∀h, k s.t. 0 ≤ h < k ≤ l, with the possible exception of i0 = il, .
An undirected graph is connected if every node is reachable from any other
node; similarly, a directed graph is strongly connected if given any pair of
nodes i and j there is a path from i to j and vice versa.
Given a graph, an induced subgraph can be generated by selecting a subset
of nodes and restricting the edge set accordingly; for a spanning subgraph,
instead, it is sufficient to select a subset of the edges. It follows that if a
monotonous property (for example being strongly connected) holds for a
spanning subgraph G̃ ⊆ G, then it also holds for G.
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3.1.1 Measures and indices

A measure of node connectivity for an undirected graph is its degree, also
known as degree centrality: it associates each node to the number of edges
incident upon it. For a directed graph the degree of a node can be decom-
posed as the sum of its out-degree and in-degree, i.e. the number of outgoing
and incoming edges from and to that node respectively.
To characterize the neighborhood of a node, one can refer to the average
nearest neighbors degree:

〈knn〉 =
∑
k′

k′P (k′|k), (3.1)

where P (k′|k) is the conditional probability that an edge of node with degree
k points to a node with degree k′. Plotting this function over the degree can
be useful to depict the overall assortativity trend for a network.
Alternatively one can estimate directly the assortativity coefficient, which is
the Pearson correlation coefficient of degree between pairs of linked nodes:

r =
∑
j,k

jk(ejk − qjqk)
σ2q

. (3.2)

The term ejk represents the fraction of edges that connect nodes of degree
j and k, and qk is the distribution of the remaining degree:

qk =
(k + 1)pk+1∑

j≥1 j · pj
, (3.3)

where pj is the probability for a node to have degree j.
For −1 ≤ r < 0, the network is disassortative, meaning that low degree
nodes are often connected with high degree nodes; r = 0 indicates non-
assortativity, and for 0 < r ≤ 1 the network is assortative, indicating a
stronger tendency for nodes to be linked with nodes of similar degree.
The concept of assortativity or assortative mixing is actually much broader
and can be led by one or multiple discrete or scalar characteristic [19], but
for the scope of this work it will be limited to assortative mixing by vertex
degree.

3.2 Visibility Graphs

The visibility graph (VG) is a non-parametric algorithm first used by Lacasa
et al.[1] to convert a scalar, univariate time series into a graph to describe its
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structure and their underlying dynamics from a combinatorial perspective[8].
Every node is uniquely identified by a time series value yi and its ordering
index ti, and the edges between nodes are determined according to a visibil-
ity criterion; for the natural visibility graphs it can be formalized as: given
any two arbitrary nodes (ta, ya) and (tb, yb) ∈ {(ti, yi)}Ni=1, they will have
visibility if

yc < yb + (ya − yb)
tb − tc
tb − ta

∀(tc, yc) | ta < tc < tb. (3.4)

A simpler formulation of the VG algorithm is the horizontal visibility graph
(HVG), proposed by Luque et al.; in this case a link between two nodes
(ta, ya) and (tb, yb) exists if

yc < min{ya, yb} ∀(tc, yc) | ta < tc < tb. (3.5)

To give an intuitive interpretation of the two visibility criteria, one can
consider the nodes as a set of equispaced buildings along a straight line;
the height of each building corresponds to the time series value1. Given a
direction of observation, an observer on the top of a building will be able to
see only certain buildings: the first one in front of him will always be visible,
and then he will have to keep raising his line of sight to look for buildings
further away. In the case of a HVG, though, the observer can at most look
straight ahead, so two buildings are mutually visible if and only if all the
buildings in between are lower than them.
Following this idea, one can define an algorithm for the VG that for each
node computes the slope of the line of sight between the first building and
the following ones, and detects nodes with strictly increasing slopes to define
the edges. On the other hand, the inspection of the following nodes for the
HVG can be based directly on their node values. If the value of the fixed
node is greater than that of the next node, it is sufficient to detect strictly
increasing node values up to the first one greater or equal to the fixed node
value; otherwise, only the first node after the fixed one is linked.
The algorithms presented for the construction of the VG and HVG should
be interpreted as a näıve approach that can still handle a fairly long series
- the longest tested has almost 21 thousand elements -, but it is not opti-
mized for computational efficiency. A faster implementation would require
a Divide&Conquer approach, as done by Iacobello [31],[32].

1In this analogy one can assume positive values for the time series, but the same
reasoning can be applied to negative values by setting the ground level to the lowest value
of the time series

17



Algorithm 1: VG

Data: Array of node values {yi}i=1,...N .
Result: 2D array edges, containing the end nodes indices for each

link.

Initialize edges
for k = 1 : N − 1 do

slopes = (yi − yk)/(i− k), with i = k + 1 : N
Get {ti}i=1,...n corresponding to strictly increasing slopesi
ti = ti + k
Append to edges the rows (k, ti), with i = 1, ...n

Algorithm 2: HVG

Data: Array of node values {yi}i=1,...N .
Result: 2D array edges, containing the end nodes indices for each

link.

Initialize edges
for k = 1 : N − 1 do

if y(k) > y(k + 1) then
Find the first kk > k so that ykk ≥ yk if @ kk then

kk = N
else

kk = kk + k
Define v = {yi}i=k+1,...,kk

Get {ti}i=1,...n corresponding to strictly increasing vi
ti = ti + k
Append to edges the rows (k, ti), with i = 1, ...n

else
Append to edges the row (k, k + 1)

The graph extracted from a time series with a visibility method is al-
ways connected and undirected, as each node is connected to the following
and visibility is defined as a mutual property between pairs of nodes. Even
though there is no dependence on algorithmic parameters, there are po-
tentially relevant boundary effects: the first point in the time series, for
example, can only be visible to points in the future, limiting its degree.
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Figure 3.1: Example of a time series (11 data values) and the associated
graphs derived from the horizontal visibility algorithm and the visibility
algorithm. The visibility rays between the data define the links connecting
nodes in the graphs.
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Remark. For a given set of nodes, every link in the HVG is also a link in
the VG but not vice versa; hence, the HVG can be considered as a spanning
subgraph of the VG.

Proof. Assuming the same notation of (3.4) and (3.5), the statement is ob-
vious for yc < yb ≤ ya.
For hypothesis (3.5) holds. Assume yc < ya < yb; let yc = ya − k, with
k > 0.
Add and subtract ta from the fractional term in (3.4):

tb − tc
tb − ta

=
tb − ta + ta − tc

tb − ta
= (1− ε), with 0 < ε < 1.

Substitute in (3.4):

ya − k < yb + (ya − yb)(1− ε) = yb + ya − yb + (yb − ya)ε.

Simplify the inequality and verify that it holds, as

−k < 0 < (yb − ya)ε.

Natural visibility graphs are also invariant under affine transformations
of the underlying time series, i.e. rescaling of both horizontal and vertical
axes and horizontal and vertical translations; this property does not hold
for horizontal visibility graphs though.

3.2.1 Irreversibility and Kullback-Leibler divergence

As already mentioned in section 2.3, relying on a symbolization of the time
series to measure irreversibility may lead to some issues; hence it may be
preferable to adopt a visibility graph approach instead. This requires the
generation of the time directed counterpart to the (H)VG, in order to dis-
tinguish between incoming and outgoing links and calculate the in- and out-
degree, also referred to by Donges et al.[6] as retarded and advanced degrees.

Kullback-Leibler divergence

To quantify the distinguishability between distributions, one can refer to the
Kullback-Leibler divergence (KLD):

D[p(x)||q(x)] =

∫
p(x) log

(
p(x)

q(x)

)
dx, (3.6)
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where p and q are two generic distributions. D = 0 if and only if p and q
are identical, otherwise it assumes positive values. The interpretation of the
KLD as a measure of distinguishability is a consequence of the Chernoff-Stein
lemma: the probability of incorrectly guessing (via hypothesis testing) that
a sequence of n data is distributed according to p when the true distribution
is q is asymptotically equal to e−nD[p(x)||q(x)]. In addition, given X and Y
random variables that describe the state of a system,

D[p(x, y)||q(x, y)] ≥ D[p(x)||q(x)], (3.7)

meaning that it is harder to distinguish between p and q when only marginal
distributions are considered instead of the full joint distributions.

A method proposed by Lacasa et al.[14] estimates the irreversibility of the
series by the Kullback-Leibler divergence (KLD) between the out- and in-
degree distributions associated with the (H)VG, or by a generalized measure
based on degree-degree distributions if needed.
Given the in- and out- degree distributions Pin(k) and Pout(k), the KLD
measures the distance between them (in a distributional sense) as:

D[Pin(k)||Pout(k)] =
∑
k

Pin(k) log
Pin(k)

Pout(k)
. (3.8)

In order to distinguish the degree of irreversibility, González et al.[8] intro-
duce the irreversibility ratio2 IR by standardizing the KLD with respect to
a null model:

IR =
KLD(in||out)− 〈KLD(in||out)〉null

σ[KLD(in||out)]null
. (3.9)

The terms 〈KLD(in||out)〉null and σ[KLD(in||out)]null are the mean and
standard deviation of KLD of the null model, which is built by shuffling the
time series to create a set of randomized samples. It is reversible by con-
struction, hence its irreversibility value decreases as the time series length
increases.
Interpreting the irreversibility ratio IR as a confidence index, a time series is
(HVG) reversible if IR ≤ 1, irreversible with weak confidence if 1 < IR ≤ 4,
irreversible with strong confidence if 4 < IR ≤ 10 and irreversible with ex-
treme confidence if IR > 10.

2The authors define more generally IRm, but in this context only IR1 is considered and
the subscript is omitted.

21



Compared to other standard methods, a visibility graph approach to esti-
mate time irreversibility requires a substantially smaller number of symbols,
and can therefore be viable even with short time series [22]. The in- and
out-degrees typically take values from a small alphabet, because the proba-
bility that an arbitrary node in a (H)VG has a certain in- ad out-degree k
typically decays exponentially fast with k[13].
This method is also robust to (reversible) noise pollution of the signal, unlike
some standard approaches: even a small amount of noise can destroy the
fractal structure of a chaotic attractor and mislead the calculation of chaos
indicators such as the correlation dimension or the Lyapunov exponents[14].

3.2.2 Motifs and system dynamics

Motifs are small connected subgraphs consisting of a small fixed number
of vertices (typically 3 or 4); ranking their relative frequency in descending
order can provide information about the dynamic structure of the underlying
time series. According to the so-called superfamily phenomenon of time
series, different complex networks from the same type of flow data have the
same rank ordering, and therefore belong to the same superfamily. Moreover
within each superfamily networks corresponding to time series from different
specific dynamic systems exhibit a unique fingerprint specific to that system
[28].
There are 6 admissible motifs of size 4, presented in Fig.3.2. In particular
motifs D and F lead the classification of the dynamics: the relative frequency
of motif D increases from periodic to chaotic and finally to noisy periodic
flows, whereas the relative frequency of the fully connected motif F decreases.
The same trend is also observed passing from chaos to hyperchaos and then
to noise, associated with an increase in total number of motifs detected.
In case of periodic flows the relative frequency of motifs D and E increases
with the period; for periodic flows with increasing levels of noise, instead,
the relative frequency of motifs C, E and F decreases whereas that of motif D
increases. The only difference in case of correlated noise is a lower variability
of relative frequency of motif E with the noise level.

Remark. A HVG cannot have a fully connected 4-nodes subgraph; hence,
motif F is impossible.

Proof. Let us assume that a four-nodes fully connected subgraph of a HVG
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Figure 3.2: Classification of 4 node motifs for undirected graphs. Each one
is labelled with a letter from A to F.

exists; and let {yi}4i=1 the node values, taken at time ti. For the definition of
fully connected graph, all pairs of nodes are linked, and each edge satisfies
the HVG linking criteria (3.5).
The edge between node 1 and 3 implies y2 < min{y1, y3}, and in particular
y2 < y3; similarly, the edge between node 2 and 4 implies y3 < min{y2, y4},
and so y3 < y2, which is absurd.

Sequential motifs

The sequential n-node motifs are characterized by node labels appearing in
strict sequential order, and can be detected by checking iteratively the links
between nodes selected by a sliding a window of size n. In this way the
dynamical information of the series is preserved and the computation runs
in linear time O(N), where N is the size of the time series. In particular for
the HVGs the motif classification can be performed by analyzing the time
series values through a set of inequalities presented in Fig.3.3; there are 2
admissible motifs of size 3, and 6 admissible motifs of size 4.
The motif significance profile, also known as simply motif profile, is defined
as the vector function Zn : n ∈ N −→ [Pn1 , ...,Pnp ] ∈ [0, 1]p that associates
the motif size n to the relative frequency Pni of each type-i motif. The
HVG motifs induce a particular partition of the set of ordinal patterns, and
the analysis of the motif profiles can distinguish between different types of
complex dynamics. Type-II 4-node motif, for example, is absent for irreg-
ular (aperiodic) real-valued time series. It can be proven in the limit of
infinite-size series [10] that i.i.d. - e.g. Gaussian, uniform, power law, etc.,
uncorrelated random series- all have the same HVG motif profiles:

Z3 =

[
2

3
,
1

3

]
; Z4 =

[
8

24
, 0,

6

24
,

6

24
,

2

24
,

2

24

]
. (3.10)
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Figure 3.3: Enumeration of all sequential 3- and 4-node motifs for the vis-
ibility graphs. Each motif can be characterized according to a hierarchy of
inequalities in the associated time series [10]. The values {xi}3i=0 refer to 4
consecutive values in the time series.

Similarly, the motif profile for the fully chaotic logistic map - as an example
of deterministic chaos - is:

Z3 =

[
2

3
,
1

3

]
; Z4 =

[
8

24
, 0,

4

24
,

8

24
,

4

24
, 0

]
, (3.11)

and it can be noted how the two processes can be distinguished by comparing
the last 4 components of the 4-node motif profiles.
Lastly, an example of stochastic process with correlation is considered; given
Gaussian white noise ξt ∼ N (0, 1) and a correlation parameter r ∈ (0, 1),
the colored noise with exponentially decaying correlations is described by
the AR(1) process:

x0 =ξ0,

xt =rxt−1 +
√

(1− r2)ξt, t ≥ 1.
(3.12)

For r −→ 0 the process tends to a white noise signal, and for r −→ 1 the
process gets completely correlated and tends to be constant xt+1 = xt ∀t,
as shown by the 4-node motif profiles reported in Fig.3.4.
This method of dynamics discrimination based on motif profiles can be used
to analyze empirical time series as convergence to the asymptotic theory
is already reached for series of size N << 104, and the discrimination be-
tween dynamics is robust to measurement noise pollution. For example,
given a chaotic signal xt = 4xt−1(1−xt−1) and a uniform white noise signal
ξ ∼ U [0, a], 0 ≤ a ≤ 1, a noisy chaotic signal Y (t) = xt + ξ can be correctly
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Figure 3.4: Theoretical values of Z4(r) for the AR(1) process evaluated at
different values of the coefficient r.

classified for a noise-to-signal ratio3 NSR ≈ 2.67.

3NSR = σ2
ξ/σ

2
Y , where σ2

i is the variance of signal i.
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Chapter 4

Case study 1: Turin
1753-2020

4.1 Series description

The series have been retrieved and elaborated by Di Napoli and Mercalli
in the context of a long term study of the climate of Turin, and analyzed
in great detail in the book Il clima di Torino [17]. They consist of daily
maximum and minimum temperature measurements, from the year 1753
up to 2020. Each observation is paired with the location in which it was
performed; as shown in Fig. 4.1, the majority of data is collected in the
city of Turin, but there have been a few station relocations over time. The
interval from 1753 to 1786 is the least homogeneous, with frequent changes
in location over a vaster area in Piedmont; this is due to the fact that the
measurements were performed by Ignazio Somis, who as the king’s physi-
cian had to frequently follow him all around Piedmont. Nevertheless, the
fact that many stations share similar conditions, such as elevation above the
ground and location in an urban area, results in an impact on the homo-
geneity that is smaller than expected. The series is also characterized by
inhomogeneities in the measurement procedures: the maximum-minimum
thermometer was introduced only in 1857, and the unit used until 1848 was
Réaumur degrees as an alcohol thermometer was used. Moreover both the
maximum and minimum temperature records present missing values in the
period 1753-1865, as reported in table 4.1.
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Figure 4.1: Locations for the temperature, precipitation and snow observa-
tions of the series Turin 1753-2020.
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Variable Miss. values Longest missing interval Duration (days)

minT 783 13 Jun 1775 - 22 Oct 1775 131

maxT 871 12 Jun 1775 - 22 Oct 1775 132

Table 4.1: Missing value details for the temperature series

4.1.1 Homogenization

The temperature series is presented in both its “original” and homogenized
version. The “original” series is the result of:

• correction/reduction of errors of registration, annotation and publica-
tion of the daily values;

• conversion to °C;

• restoration where possible of a 24 hour observation period for the
measurement of daily extremes (concerning in particular the period
1885-1961).

The homogenized series has been virtually lead back to the station of the
Ufficio Idrografico del Po (UIPO) in corso Bolzano, where the observations
from March 1961 to December 2004 were conducted, and at the current
urban expansion of the city. The following methods have been applied to
calculate corrections to the “original” series:

• gap completion, estimating the missing days from nearby records;

• discontinuity detection and reduction, addressing each one of the fol-
lowing causes separately:

a) missing record of daily minimum temperature before 10.Feb.1857
and maximum temperature before 01.Aug.1857;

b) thermometer replacement/relocation, change of exposition, etc.;

c) change in stations;

d) urban expansion, in particular construction of new buildings.

The homogenization has proven challenging for data up to 1866, as there are
very few series available for reference, and they are affected as well by dis-
continuities. Therefore, the estimation of gaps for this first leg of the series
has been performed with the aim of simply returning homogeneity on the
daily thermal excursion in the intervals with annual average way above or
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below the norm of the corresponding station. The rest of the data, instead,
can be compared with multiple series from stations in the Po basin, insti-
tuted after the establishment in 1865 of the national meteorological service.
The comparison is performed with a Craddock test, and the correction is
computed as a constant to sum on the non-homogeneous interval detected.
The daily temperature extremes for the first century of the series were esti-
mated from two or three daily observations at fixed hours, depending on the
normal daily thermal oscillation typical of that period of the year and on the
atmospheric conditions of the single day. This implies that some anomalies
in the daily temperature have not been recorded, and as such some extremes
may be incorrectly estimated; nevertheless, given the relative infrequency of
anomalies in the climate of Turin, the overestimation of minimum temper-
ature and underestimation of maximum temperature on the annual average
is considered negligible (<= 0.1°C).

Change in stations

To correct the inhomogeneities introduced by a change in stations, a com-
parison between each station in closing phase and the following one has been
performed; in case of no simultaneous observations, a third station has been
considered. The difference of maximum (minimum) temperature between
the two stations is calculated, and the days with a value below the 5th per-
centile or above the 95th percentile1 of the monthly series are eliminated.
For the remaining days, the average temperature T̄ = (Tmax + Tmin)/2
and daily thermal excursion DTE = Tmax− Tmin are calculated for each
station.
A least squares approximation is used to estimate the regression function of
average temperature between simultaneous observations in the two stations
over each month:

ˆ̄Ty = a+ b · T̄x, (4.1)

where the subscripts x and y refer to the old and new station respectively.

The bilateral comparison is then performed between ˆ̄Ty and T̄y to adjust the
parameters of the regression lines. The results combined provide for each
station different from UIPO a set of 12 regression functions of type (4.1)
that perform for each day the virtual change of stations to the reference
one; possible discontinuities in correction at the change of the month have

1The thresholds are set at the 10th and 90th percentile in case of stations particularly
far or with big differences in altitude.
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been corrected with a moving average smoothing with a 31-day window.
The daily thermal excursion estimation for the new station is estimated as

D̂TEy = RDTE ·DTEx, (4.2)

where RDTE is the monthly average of the daily thermal excursion ratio
DTEy/DTEx smoothed over the year with a moving average with a 61-day
window. The smoothed RDTE coefficients computed from the bilateral
comparisons are multiplied to obtain for each station a RDTE for each day
of the year that allows to convert the DTE values so that they can be as-
signed to the UIPO station.
The series of daily average temperature and daily thermal excursion es-
timated for the UIPO station allow for the estimation of maximum and
minimum temperature:

Tmax = ˆ̄T + D̂TE
2
,

Tmin = ˆ̄T − D̂TE
2
;

(4.3)

Urban expansion

The main effect of urban expansion on temperatures is the urban heat is-
land (UHI), i.e. a difference in temperature - always positive difference in
the annual average - between the urban conglomerate and the surrounding
rural area, caused by a larger house density, industrial activity and traffic
emissions. During the period 1990-2002, for example, the rural areas sur-
rounding Turin was about 1.9°C colder than the city. This inhomogeneity
factor has already removed for measurements recorded after 1960, so only
the period 1753-1960 is considered. The maximum (minimum) temperature
is referred to the current level of urbanization by adding the difference be-
tween the current urban heat island intensity and the one present at the
time of measurement2:

T̂current = Told + (UHIcurrent − UHIold). (4.4)

The urban heat island intensity can be estimated from the number of urban
residents P [5] with the empirical formula:

UHI = α · logP, (4.5)

2The heat island varies too much on a daily basis, so a monthly average level is con-
sidered.
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(a) (b)

Figure 4.2: Original (orange) and homogenized (blue) series of daily maxi-
mum temperature for the year 1753 (a) and 1775 (b).

where α is a parameter specific to the city. More precisely, the heat island is
specific of each urban-rural pair of stations, as proven by the weak correla-
tion identified on a study of pairs of urban-rural stations in Novara, Milano,
Brescia, Bologna and Parma [Zanella 1976, Grillini 1978, Bottau 1997, Bel-
trano & Perini 1996].

The homogenization of the temperature series results on average in a posi-
tive correction for the maximum series and a negative one for the minimum;
as expected, the difference between the homogenized and original series is
greater in the first years, due to the presence of gaps in the data and higher
variety in the spatial distribution of the observation sites. The main statis-
tics of the difference between homogenized and original series are reported in
tables 4.1.1 and 4.1.1, and an example of comparison between the original
and homogenized maximum temperature series is presented in Fig.4.2; in
particular Fig.4.2b shows how the homogenized series fills the longest miss-
ing data interval in the series.

31



Homogenized-Original maxT

Metric 1753-1865 1866-2020

Mean 0.9246 0.2950
Std. dev 1.411 0.8879

Max 8.800 4.400
Min -7.800 -2.600

90th prctile 2.700 1.500

Homogenized-Original minT

Metric 1753-1815 1816-2020

Mean -0.8284 -0.1990
Std. dev 1.529 1.064

Max 4.100 4.600
Min -12.50 -9.500

90th prctile 0.9000 0.9000

Table 4.2: Mean, standard deviation, maximum, minimum and 90th per-
centile of the difference between homogenized and original series of maxi-
mum temperature (above) and minimum temperature (below). The division
in two periods is defined in order to have missing data only in the first time
interval.

4.2 Preliminary analysis

As the scope of this work revolves around the use of networking techniques
to extract information about the underlying time series, the following
analysis will focus exclusively on the homogenized version of the maximum
and minimum temperatures; for simplicity, the adjective homogenized is
henceforth omitted.

The maximum temperature ranges from −7.8°C to 39.7°C, recorded
on January 25 1758 and August 11 2003 respectively. The minimum
temperature instead ranges from −21.2°C to 26.8°C, recorded on February
3 1754 and July 7 2015 respectively. Both series can be fitted with a
bimodal distribution, as shown in Fig.4.3; the peaks for the maximum
temperature distribution are 9 and 26°C, and 8 and 16°C for the minimum
temperature.
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Figure 4.3: Relative frequency (%) of daily maximum (left) and minimum
(right) temperatures. The red curve is the bimodal distribution fitted to the
histogram.

The monthly average of maximum and minimum temperatures are lowest
in January and highest in July; the results, divided between values before
and after 1901 are presented in Fig.4.4. The monthly averages are lower for
the most recent period, with the exception of September and October for
the maximum temperature. The corresponding monthly standard deviation
plots of maximum and minimum temperature are presented in Fig.4.5; the
standard deviation of maximum temperature in the period 1901-2020 is
lower than the corresponding value for the period 1753-1900. The same
applies to the plot relative to the minimum temperatures, for months May
to September.

The yearly record of maximum temperature falls between June and
August, with 50% of the instances concentrated in July and an exception
of 4 occurrences in May and 4 in September over a period of 268 years.
Analogously, most yearly records of minimum temperature occur between
December and February, with 55% in January; only 4 years register their
coldest date in November and 6 in March.
The yearly average minimum temperature ranges from 6.6°C, recorded
in 1855, to 11.1°C in 2020; the yearly average of maximum temperature,
instead ranges from 14.76°C, recorded in 1814 and 1855, to 19.65°C,
recorded in 2015. As shown in Fig.4.6a, the 9-year moving average of the
minimum temperature shows periodic oscillations between approximately
7°C and 9°C; in the last century, though, the amplitude of the oscillations is
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Figure 4.4: Monthly mean of maximum (left) and minimum (right) temper-
atures. The blue series refers to the period 1753-1900, and the orange one
to 1901-2020.

Figure 4.5: Standard deviation of monthly maximum (left) and minimum
(right) temperatures. The blue series refers to the period 1753-1900, and
the orange one to 1901-2020.
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(a) Yearly average of minimum temperature (blue line), 9-year moving average (red
line) and linear trend for the last 100 years of the series (red dashed line).

(b) Yearly average of maximum temperature (blue line), 9-year moving average
(red line) and linear trend for the last 50 years of the series (red dashed line).

reduced and the smoothed data follows a positive linear trend3. Similarly,
the yearly average maximum temperature and its 9-year moving average
is presented in Fig.4.6b: the moving average shows periodic oscillations
between 16°C and 17.5°C, with the exception of the last 50 years; in this
period the smoothed data follows a linear trend that goes from 16.63°C to
19.63°C.

As a result of the increasing temperatures, the number of frost days in a
year has significantly decreased over time especially in the last century, as
shown in Fig.4.7. The highest number of days with maximum temperatures

3All linear trends are tested at the 1% significance level.
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below 0°C is 35 in 1755, and before 1950 several peaks with values between
14 and 25 frost days are recorded; the last peak at 14 days occurs in 1956,
and the following local maxima decrease in value, reaching 10 days in 2010.
The number of days in a year with maximum temperature over 30°C has
increased significantly4 over the last 30 years, as shown in Fig.4.8. The
number of hot days is quite high at first, reaching a peak of 52 days in
1772, and it decreases subsequently, until new peaks of 44 and 42 days in
1928 and 1945 respectively. Since 1985 summers have become increasingly
longer, with 1991 almost reaching the previous record of 1772 and then
2003 featuring a record of 72 hot days, followed by other 6 years recording
at least 52 hot days in summer.
A similar trend is reflected in the analysis of heat waves according to
the definition of Mercalli[17], as shown in Fig.4.9. The maximum inten-
sity of heat waves first assumes values relatively high, with a peak of
36.35°C in 1771, then decreases in the following century, and increases
again in the last 150 years, with a new record of 37.57°C set in 2003
and intensities never lower than 32°C from the year 2000. The year
2003 also features a peak of heat wave duration of 37 days, previously
matched only in 1928, and later surpassed in 2010 by a new record of
47 consecutive days with daily maximum temperatures greater or equal
to 28°C. The instances of years with no heat wave detected all belong
to the periods 1806-1883 and 1908-1977, with most concentrated in the past.

Volcanic eruptions

The average temperature series is analysed by Mercalli [17] also in relation-
ship with the major volcanic eruptions of the last two centuries; the most
notable effects are observed in correspondence of the eruption of the Tamb-
ora in 1815 and of the Coseguina in 1835. Turin did not experience the
“year without summer” in 1816, as the temperatures remained quite mild,
but an exceptional drought occurred from August 1816 to February 1818,
registering an amount of precipitation equal to 43% of the average of the
period 1803-2007. On the other hand, an intense cooling occurred between
1835 and 1838: the yearly average temperature during that period never
went above 11.6°C, and the coldest winter of the entire series occurred in
1835.

4with a confidence level > 99% according to the Mann-Kendall test
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Figure 4.7: Number of frost days in a year (blue line) and smoothed average
with a 9-year window (red line).

Figure 4.8: Number of days in a year with daily maximum temperature
above 30°C (blue line) and smoothed average with a 9-year window (red
line).
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Figure 4.9: Maximum intensity of the heat waves detected each year, as
defined by Mercalli [17], and maximum length of the heat wave, i.e. number
of consecutive days with maximum daily temperatures ≥ 28°.

4.3 Visibility graphs

The natural and horizontal visibility graphs considered for the analysis of
the maximum temperature series are computed over the full series and over
a partition of the data in 5 and 10 intervals5, meaning that for each interval
a graph is generated taking a subset of the time series as nodes. The full
series and its partitions are then detrended to generate two detrended
versions of each graph; for the first version the trend is computed on
the whole series, whereas for the second version (indicated as “DT loc”)
each interval of the partitions is detrended separately. Moreover for each
base graph a deseasoned version is generated: the series or its partition is
deseasoned by computing the “average year”, i.e. the mean of temperatures
for each day of the year over the given period, and subtracting from each
data point the corresponding average temperature.

4.3.1 Degree metrics

The first four moments of the degree for the HVG, VG and their detrended
and deseasoned counterparts computed on the full series are presented in

5It is the same division used in table ??, and the 5 interval set is derived by merging
pairs of intervals together. With an abuse of language these graphs will also be identified
by referring to the interval of the underlying time series.
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table 4.3. All the metrics for the VGs are greater than the corresponding
value for the HVGs. There is not much difference in terms of moments
between the different versions of HVG; each moment for the deseasoned
HVG is slightly greater than the corresponding value for the detrended
HVG, and these are slightly greater than the corresponding value for the
HVG computed on the original series. Also the moments of the degree of
the VG and its detrended counterpart are close in value, but there is a
greater difference w.r.t. the deseasoned VG. More specifically, the degree
mean and standard deviation of the deseasoned VG are lower w.r.t. the
VG, whereas the skewness and kurtosis are greater. This suggests that the
degree distribution for the deseasoned VG has a lower peak, is more skewed
to the right and has more outliers, corresponding to nodes in the graph
with degree much greater than the average.
The same metrics are shown in figure 4.10 for the graphs computed on 5
or 10 intervals. Each metric is characterized by a significant linear trend,
that is positive for the mean of the HVGs, the skewness and kurtosis of
the VGs, and negative in all other cases. The linear trend for the mean
degree of the detrended and deseasoned HVG feature the smallest slope in
absolute value. On the other hand, the kurtosis plots feature trends with
the greatest slopes in absolute value, with the exception of the deseasoned
VG. The deseasoned graphs always feature a weaker trend in comparison
to their original counterpart. The choice between 5 or 10 intervals does not
particularly affect the results for the HVGs, but for the VGs the linear fit of
skewness and kurtosis improves when longer intervals are considered. The
global and local detrending of the series lead to almost identical results in
terms of moments of the degree of the corresponding graphs.

Assortativity

The neighborhood connectivity of the HVGs and VGs computed over 5 and
10 intervals are reported in figures 4.11 and 4.12 respectively. The partition
of the time series in 5 or 10 intervals does not particularly affect the plots,
with the exception of a few outliers for the highest degree values in the
deseasoned HVG and the VG; also the differences between detrending
methods are minimal. The plots for the HVGs have a much lower number
of data points compared to those for the VGs, implying that the number of
unique degree values is a lot lower; moreover the maximum degree ranges
from 23 to 30 for the HVGs, and from 131 to 154 for the VGs. This is in
accord with the notion that the HVG can be interpreted as a subgraph of
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(a) Mean (b) Standard deviation

(c) Skewness (d) Kurtosis

Figure 4.10: First four moments of the degree for the HVG, VG and their
detrended (DT/DT loc) and deseasoned (DS) counterparts, computed over
5 intervals (blue line) and 10 intervals (red line). The corresponding linear
trends are highlighted with a dashed line when significant.
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Degree Metrics

Graph Mean Std. deviation Skewness Kurtosis

HVG 3.898 2.035 1.724 7.803
HVG (DT) 3.999 2.133 1.738 7.926
HVG (DS) 3.999 2.147 1.766 7.996

VG 9.163 10.09 2.920 14.65
VG (DT) 9.168 10.09 2.918 14.62
VG (DS) 7.485 6.716 4.070 37.92

Table 4.3: First four moments of the degree for the HVG, VG and their
detrended (DT) and deseasoned (DS) counterparts, computed over the full
series.

the VG, where only a subset of the edges is kept.
The neighborhood connectivity plots for the HVGs display points above the
bisector only for degree values lower than 5; similarly, the plot points for the
deseasoned VG are above the bisector only for degree values below 13. For
the VG, instead, the bisector is crossed for degree values between 21 and 31
depending on the time interval considered; the most recent series intersect
the bisector for lower degree values, and then the crossing threshold is
gradually shifted towards higher degrees. The same observation applies to
the detrended VGs, with the interception of the bisector occurring between
degree 22 and 30.
The NC plots for the HVGs are distributed along a line that is almost
horizontal for the HVG and its detrended counterparts and has positive
slope for the deseasoned one; the points are most scattered for the least
recent intervals, especially for degree values between 17 and 22. The plots
for the VG and detrended VG feature a larger variability in NC between
different time intervals and within the same series from values of degree
between 40 and 60.
Interestingly, the oldest interval of both partitions (1753-1804 and 1753-
1777) stands out in the plots for the VG and its detrended counterparts:
not only do the major outliers belong to this series, but the series as a whole
lies almost always above all the other data points, i.e. for any given degree
the oldest nodes tend to have the highest neighbourhood connectivity. In
the case of the deseasoned VG, instead, all series follow a positive linear
trend, with some contained variability between degree 40 and 90; this is the
instance with highest disassortativity for high degree nodes.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 4.11: Neighborhood connectivity for the HVG, VG and their de-
trended (DT/DT loc) and deseasoned (DS) counterparts, computed over 5
intervals. The bisector y = x is highlighted with a red dashed line for each
plot.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 4.12: Neighborhood connectivity for the HVG, VG and their de-
trended (DT/DT loc) and deseasoned (DS) counterparts, computed over 10
intervals. The bisector y = x is highlighted with a red dashed line for each
plot.
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Time reversibility

The time reversibility test is performed by calculating the Kullback-Leibler
divergence based on the in- and out-degree of the HVG, VG and their
detrended and deseasoned counterparts; these values are standardized
w.r.t. a null model obtained by shuffling the corresponding series, and the
resulting irreversibility ratios IR are presented in table 4.5.
The test on the VG returns IR values associated with irreversibility with
strong and extreme confidence for both partitions of the series considered.
The HVG instead features an interval (1859-1912) that is reversible with
weak confidence and corresponds in the finer partition to two reversible
intervals; moreover in this latter case also the period from 1967 to 2020
is reversible with weak confidence. Similarly, the detrended VG in the
5-interval partition is completely irreversible, and in the 10-interval par-
tition the periods 1859-1912 and 1967-1993 are weakly reversible. The
detrended HVG is reversible with at least weak confidence in the periods
1805-1858, 1913-2020; in particular the subintervals 1805-1831, 1940-1966
and 1967-1993 are reversible. The deseasoned HVG is reversible on the
period 1859-1912 for both partitions considered; in the finer partition also
the period 1967-2020 is reversible with at least weak confidence. The
deseasoned VG in the 5-interval partition is reversible with at least weak
confidence from 1805 to 2020, which is reflected in the finer partition, with
the exception of the interval 1940-1966.
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Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1753-1777 22.06 23.67 2.085 1.025

1777-1804 36.10 28.36 26.12 22.48

1805-1831 10.51 6.155 3.145 0.9338

1832-1858 7.877 6.725 0.5424 2.024

1859-1885 0.5084 0.1805 8.370 4.331

1886-1912 -0.5768 -1.827 8.106 5.979

1913-1939 15.34 8.283 4.429 1.162

1940-1966 8.143 4.946 -0.9441 -2.984

1967-1993 2.848 1.605 -1.580 -0.4552

1994-2020 2.251 -1.102 0.9984 2.241

Period VG VG DS HVG DT loc VG DT

1753-1777 22.03 7.596 16.49 15.88

1777-1804 22.04 8.146 15.32 14.96

1805-1831 8.037 0.7347 6.760 6.568

1832-1858 4.543 3.429 4.438 6.134

1859-1885 7.679 1.472 6.335 3.484

1886-1912 4.070 3.996 3.486 3.905

1913-1939 13.82 2.890 9.412 9.313

1940-1966 10.04 4.178 9.346 7.871

1967-1993 4.888 1.711 2.215 3.616

1994-2020 8.961 0.5226 6.740 6.514

Table 4.4: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 10 time
intervals. The coloring of the cells associates green to IR ≤ 1 (reversibility),
light green to 1 < IR ≤ 4 (reversibility with weak confidence), yellow to
4 < IR ≤ 10 (irreversibility with strong confidence) and orange to IR > 10
(irreversibility with extreme confidence).
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Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1753-1804 114.3 75.12 15.63 15.44

1805-1858 35.80 27.40 1.949 1.417

1859-1912 3.156 -0.9647 5.267 4.989

1913-1966 39.60 27.63 1.976 1.678

1967-2020 9.320 5.123 2.011 0.2669

Period VG VG DS VG DT loc VG DT

1753-1804 28.52 13.78 56.08 19.90

1805-1858 12.31 3.319 17.77 7.960

1859-1912 9.474 0.9784 16.97 7.777

1913-1966 17.56 3.866 37.38 11.45

1967-2020 9.094 2.029 16.54 5.943

Table 4.5: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 5 time in-
tervals. The coloring of the cells associates green to IR ≤ 1 (reversibility),
light green to 1 < IR ≤ 4 (reversibility with weak confidence), yellow to
4 < IR ≤ 10 (irreversibility with strong confidence) and orange to IR > 10
(irreversibility with extreme confidence).

4.3.2 Motif detection

A motif detection algorithm is applied to the HVG computed over 5 and
10 intervals, the VG computed over 10 intervals and all their deseasoned
counterparts; the most relevant frequency plots are presented in Fig. 4.13,
and they correspond to motifs A, B and D. The motif frequencies associated
to the deseasoned and original graphs are rather similar to each other, with
point-wise discrepancies generally below 0.05; moreover for each frequency
line the values tend to range in an interval of length smaller than 0.05. The
partition of the series in 5 or 10 time intervals does not particularly affect
the frequency plots for both the original and deseasoned graphs: for the
HVGs motif A is the most frequent, followed closely by motif D, and both
are always more frequent than motif B. On the other hand around 70% of
the motifs detected for the VGs are of type D and for the original graph
associated to the original series motif B is always more frequent than motif
A.
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Figure 4.13: Frequencies of motifs A, B and D (left, center and right column
respectively) for the HVGs computed over 5 intervals (top row), 10 intervals
(center row) and for the VGs computed over 10 intervals (bottom row). The
orange and red lines correspond to the original underlying time series, and
the blue dashed line to its deseasoned counterpart.
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Chapter 5

Case study 2: Prague

5.1 Series description

The series analysed in this section has been retrieved from the homoge-
neous blended European Climate Assessment dataset (ECA&D) and con-
sists of daily maximum temperature measurements for the station of Praha-
Klementinum in Czech Republic (50°05’11”N, 14°24’59”E). The series covers
a period of 180 years, from the 1st of January 1825 to the 30th of April 2005.

5.1.1 Homogenization

The series in the ECA&D have been homogenized by an automated proce-
dure described in detail in [23], that accounts for low availability or incom-
pleteness of metadata, especially for the series further back in time. Nev-
ertheless, metadata is necessary in instances like a simultaneous changes to
the measurement networks at national scale, as both the target and refer-
ence series would be affected by the same break.
The breaks are detected at a yearly resolution with an agreement-based sys-
tem based on three common methods (Prodige, RHtest and GAHMDI; for
more information see section 2.1.2), meaning that a breakpoint is detected
if at least two of these methods lead to the same result. The selection of
reference series and combination of the detection methods are performed
separately on annual and winter/summer half means of standardized dif-
ferences between candidate and reference series; a maximum of 8 reference
series is automatically selected on the basis of completeness, correlation of
annual average (minimum 0.6) and distance (maximum 1000km). Break-
points detected in adjacent years are considered as the same breakpoint,
and at least three reference series must confirm a breakpoint in a pairwise
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approach. The timing of the detected breaks (τ1, ..., τn), from the most re-
cent to the earliest, leads to the segmentation of the candidate into n + 1
sub-series S0(t|τ1 < t), S1(t|τ2 < t < τ1), etc. homogeneous by definition[3].
For each segment longer than 5 years, the adjustments are calculated by
quantile matching on a monthly base and applied on a daily resolution.
The reference series are selected from a box of 6°centered on the candidate
station and with an elevation difference smaller than 500 meters; in case
of densely covered areas, the set union of the 40 longest ones and the 20
starting earliest is chosen. The break detection procedure is applied to the
reference series to obtain homogeneous sub-series, and only those with at
least 5 years of overlap with both segments of the candidate are selected;
the maximum length of the sub-series is limited to 20 years. Finally, the
18 reference sub-series with highest daily raw correlation (> 0.75) with the
segment of the candidate after the break are kept. In areas with a sparse
network, up to 5 non-split series - meeting the correlation, geographical and
temporal overlapping requirements - can be added to the reference set; in
any case, a minimum of 3 reference series is required.
The breaks are considered in succession from τ1 to τn. Given the break τi,
the segment of the candidate after τi is termed the basis series, while the
segment immediately before it is adjusted. For each month the distribution
of temperatures is considered separately, introducing the seasonal cycle in
the adjustments. A quantile sequence is generated for data before and after
the break in the target (sq,m, bq,m) and in the reference series (rbefj,q,m, r

aft
j,q,m);

given the target month m, also the absolute temperatures from the preced-
ing and following month are considered in the calculation of the quantiles
to reduce the noise. The adjustments are calculated as

ai,j,q,m = (bq,m − si,q,m)− (raftj,q,m − r
bef
j,q,m), (5.1)

and they are smoothed by considering the mean of adjustments from neigh-
boring months and quantiles:

āj,q,m = (aj,q,m + aj,q+5,m + aj,q−5,m + aj,q,m+1 + aj,q,m−1)/5. (5.2)

A set of estimations of the correction is produced, each one corresponding
to the different overlapping periods each reference series Rj has with the
segments of the candidate. The value to be corrected may belongs to a
different quantile q̃j in each of the overlapping periods, so the estimation of
the adjusted value related to Rj is ṽj = v + aj,q̃j ,m, where v is the original
value. The final adjusted value is the median of the estimations ṽj .
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5.1.2 Missing values

The non-blended series is complete, but as a result of the homogenization
process the corresponding blended series features 22 missing values. These
are distributed in an interval that ranges from 1827 to 1956; 13 years
lack only one entry, the years 1922 and 1925 lack two entries each and
the year 1920 lacks 5. Moreover the first three missing values in 1920
are concentrated in January, which results in the shortest time differences
between missing dates in the series: 17 days with the missing value in 1919,
11 days between the first two missing values of 1920 and 6 between the
second and third. Every other pair of missing dates has at least 30 days
of distance from each other. The series is completed by assigning to each
missing value the average between the previous and following temperature
record.

5.1.3 Preliminary analysis

The maximum temperature ranges from −20.5°C to 37.8°C, recorded on
January 22 1850 and July 27 1983 respectively. The series can be fitted with
a bimodal distribution, as shown in Fig.5.1; the peaks for the maximum
temperature distribution are 5 and 20°C.
The earliest maximum temperature is recorded on April 16, 2005, followed
by another instance in May 1847; every other yearly maximum temperature
is recorded between June and August, with occurrences most frequent in
July.
The monthly average and standard deviation of maximum temperatures,
divided between values before and after 1901, are presented in Fig.5.2.
The monthly average plot is qualitatively similar to Fig.4.4: January is
the coldest month, and July the hottest. The values are lower for the
most recent period, with the exception of September and October for the
maximum temperature. The standard deviation instead features lower
variability between the months for both intervals, and lower difference
between each pair of monthly values; moreover most of the highest values
of standard deviation are associated to the period 1901-2004.
The yearly average of maximum temperature ranges from 11.2°C, recorded
in 1838, to 15.9°C, recorded in 1834. Their values and the 9-year moving
average are reported in Fig.5.3. The data follows a positive linear trend,
with increasing slope for the more recent intervals.
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Figure 5.1: Relative frequency (%) of daily maximum temperatures. The
red curve is the bimodal distribution fitted to the histogram.

Figure 5.2: Monthly mean (left) of maximum temperatures and correspond-
ing standard deviation (right). The blue series refers to the period 1825-
1900, and the orange one to 1901-2004.
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Figure 5.3: Yearly average of maximum temperature (blue line) and 9-year
moving average (red line); the linear trends computed over the whole period,
the last 100, 50 and 30 years of the series are highlighted in a dashed blue,
red, orange and yellow line respectively.

One of the consequences of the increasing maximum temperature is the
reduction of number of frost days in a year, as shown in Fig.5.4. The year
with the highest number of days with maximum temperature below 0°C is
1838, and the record of frost days gradually lowers to 47 in 1996. The plot
highlights a reduction in the number of frost days of almost 37% over the
180 year period.
On the other hand, the increase in number of days with maximum tem-
perature above 30°C is less obvious; as shown in Fig.5.5, the value of the
peaks slightly decreases over time, from 30 days in 1834 to 27 in 1994 and
2003. The local minima instead show a more clear increase in value in the
last decades of the series: the last year with no hot days is 1956 and the
minimum of hot days in the following years increases to 4 in 1996 and to 10
in 2004.
Differently from the previous case study, though, the number of heat waves
detected is significantly lower, as shown in Fig.5.6; this implies that the
majority of years in the series do not feature periods of at least 6 days with
maximum temperature ≥ 28°C, and that even when hot days occur they
are generally followed by colder days. Nevertheless, both the record of heat
wave intensity (34.95°C) and length (20 days) occur in the last decade of
the series, in 1994 and 2003 respectively.
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Figure 5.4: Number of frost days in a year (blue line), smoothed average
with a 9-year window (red line) and linear trend (dashed bright red line).

Figure 5.5: Number of days in a year with maximum temperature above
30°C (blue line), and smoothed average with a 9-year window (red line).
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Figure 5.6: Maximum intensity of the heat waves detected each year, as
defined by Mercalli [17], and maximum length of the heat wave, i.e. number
of consecutive days with maximum daily temperatures ≥ 28°.

5.2 Visibility graphs

5.2.1 Degree metrics

The first four moments of the degree for the HVG, VG and their detrended
and deseasoned counterparts computed on the full series are presented in
table 5.1. Interestingly, all the observations conducted in section 4.3.1 in
relation to table 4.3 apply in this case as well. All the metrics for the VGs
are greater than the corresponding value for the HVGs; in particular the
values of standard deviation and kurtosis for the VGs are more than double
the corresponding value the HVGs. Moreover the difference in standard
deviation and kurtosis between the deseasoned and original VG is greater
in absolute value than the corresponding difference for the HVGs.
The degree moments for the graphs computed on 4 and 7 intervals are
shown in figure 5.7. Each metric is characterized by a significant linear
trend, but for some instances the slope is positive if the series is partitioned
in 4 intervals, and negative otherwise. This effect is most likely induced
by the low number of intervals and should not have any real implication
on the interpretation of the result: the data points of the red and blue
series for each plot are indeed close in value. This occurs in the degree
skewness of all versions of HVG, but it can also be observed for the standard
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Degree Metrics

Graph Mean Std dev Skewness Kurtosis

HVG 3.902 1.921 1.530 6.364
HVG (DT) 3.999 2.006 1.542 6.439
HVG (DS) 3.999 2.030 1.642 7.180

VG 9.314 9.235 2.788 13.89
VG (DT) 9.324 9.240 2.786 13.88
VG (DS) 7.877 6.185 2.950 20.19

Table 5.1: First four moments of the degree for the HVG, VG and their
detrended (DT) and deseasoned (DS) counterparts, computed over the full
series.

deviation, skewness and kurtosis of the deseasoned VG, the mean and
kurtosis of the deseasoned HVG, and the standard deviation and kurtosis
of the HVG. The sign of the slope for the remaining plots corresponds to
figure 4.10, with the exception of the mean degree of the deseasoned HVG
and the kurtosis of the detrended HVG, which feature a positive linear trend.

5.2.2 Assortativity

The neighborhood connectivity of the HVGs and VGs computed over 4 and
7 intervals are reported in figures 5.8 and 5.9 respectively. The observations
conducted in section 4.3.1 still apply: in particular the plot points lie above
the bisector only for degree values lower than 4 in the case of the HVGs, and
13 for the deseasoned VG. For the VG and its detrended counterparts, in-
stead, the bisector is crossed for degree values between 23 and 27 depending
on the time interval considered; the most recent series intersect the bisector
for lower degree values, and the least recent intersect for higher degree
values. The major difference with the previous case study is that for all
plots associated to the VGs the points of different intervals are less scattered.
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(a) Mean (b) Standard deviation

(c) Skewness (d) Kurtosis

Figure 5.7: First four moments of the degree for the HVG, VG and their
detrended (DT/DT loc) and deseasoned (DS) counterparts, computed over
5 intervals (blue line) and 10 intervals (red line). The corresponding linear
trends are highlighted with a dashed line when significant.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 5.8: Neighborhood connectivity for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 4 intervals.
The bisector y = x is highlighted with a red dashed line for each plot.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 5.9: Neighborhood connectivity for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 7 intervals.
The bisector y = x is highlighted with a red dashed line for each plot.
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5.2.3 Time reversibility

The irreversibility ratios relative to the HVGs and VGs computed over 7
and 4 intervals are presented in table 5.3. Each HVG, VG and detrended
VG lead to a value of IR greater than 4 on each interval of both partitions,
meaning that they are all irreversible; also the deseasoned HVG results
in mostly irreversible intervals. The deseasoned VG results in irreversible
intervals on the 4-interval partition, but on the finer one 3 intervals are
labeled reversible with weak confidence. The most surprising result though
is given by the detrended HVG: the 4-interval partition highlights only
1951-2004 as a reversible period, but in the finer partition the 3 intervals
covering the period 1927-2004 are reversible and every other interval is
reversible with at least weak confidence.

Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1825-1848 16.75 6.097 45.74 3.003

1849-1874 26.12 11.00 7.599 2.086

1875-1900 15.87 6.632 4.968 0.4917

1901-1926 16.31 6.799 3.983 2.556

1927-1952 7.074 3.892 1.846 -1.368

1953-1978 10.07 5.349 0.3765 -0.04739

1979-2004 5.405 5.272 0.2034 0.3669

Period VG VG DS VG DT loc VG DT

1825-1848 9.888 5.340 15.77 11.39

1849-1874 11.73 8.902 16.57 17.11

1875-1900 9.785 2.769 15.09 11.76

1901-1926 6.877 5.542 10.71 11.05

1927-1952 6.113 5.179 10.16 8.011

1953-1978 4.647 3.927 10.43 8.962

1979-2004 7.581 3.047 10.44 9.955

Table 5.2: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 7 inter-
vals. The coloring of the cells associates green to IR ≤ 1 (reversibility),
light green to 1 < IR ≤ 4 (reversibility with weak confidence), yellow to
4 < IR ≤ 10 (irreversibility with strong confidence) and orange to IR > 10
(irreversibility with extreme confidence).
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Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1825-1842 8.569 6.069 54.15 3.165

1843-1896 26.89 31.76 15.43 8.891

1897-19050 23.20 21.57 17.51 6.831

1951-2004 10.25 9.336 0.5682 0.6910

Period HVG HVG DS HVG DT loc HVG DT

1825-1842 15.68 4.477 6.872 16.11

1843-1896 19.82 12.91 12.04 18.23

1897-19050 19.52 14.50 9.827 17.25

1951-2004 15.11 13.42 10.51 15.05

Table 5.3: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 4 inter-
vals. The coloring of the cells associates green to IR ≤ 1 (reversibility),
light green to 1 < IR ≤ 4 (reversibility with weak confidence), yellow to
4 < IR ≤ 10 (irreversibility with strong confidence) and orange to IR > 10
(irreversibility with extreme confidence).

5.2.4 Motif detection

A motif detection algorithm is applied to the HVG computed over 4 and
7 intervals, the VG computed over 7 intervals and all their deseasoned
counterparts; the most relevant frequency plots are presented in Fig. 5.10.
Interestingly, the results obtained have many features in common with the
frequency plots discussed in section 4.3.2, especially for the HVGs. The
greatest difference is observed for the frequency plots of motifs B and D
of the deseasoned VG, as the corresponding plot lines do not intersect the
lines associated to the original graph.
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Figure 5.10: Frequencies of motifs A, B and D (left, center and right column
respectively) for the HVGs computed over 4 intervals (top row), 7 intervals
(center row) and for the VGs computed over 7 intervals (bottom row). The
orange and red lines correspond to the original underlying time series, and
the blue dashed line to its deseasoned counterpart.
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Chapter 6

Case study 3: Bologna

6.1 Series description

The data analyzed in this section is another homogeneous blended1 series
from the European Climate Assessment dataset (ECA&D), that refers to
daily maximum temperature measurements for the station of Bologna, in
Italy. The series spans over 190 years, from the 1st of January 1814 to
the 31st of December 2003, and is characterized by 140 missing values as a
result of the homogenization process. There is a total of 64 years featuring
missing data points, and about 66% of them are concentrated in the periods
1814-1841 and 1950-1976; there are at most 5 missing entries in the same
year and there are only 4 instances on the whole series with two consecutive
missing dates. This allows to perform data inputation by assigning to each
missing value the average of the previous and following temperature in the
series.

6.1.1 Preliminary analysis

The maximum temperature ranges from −8.2°C to 40.7°C, recorded on
February 13 1929 and July 11 1870 respectively. The series can be
fitted with a bimodal distribution, as shown in Fig.6.1; the peaks for the
maximum temperature distribution are 8 and 28°C, with a minor peak at
19°C.
The earliest yearly maximum temperature is recorded on May 23, 1847; the
other maxima are distributed between June and August, with about 54%
of occurrences in July, 33% in August and 12% in June.

1For information on the homogenization process refer to section 5.1.1.
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Figure 6.1: Relative frequency (%) of daily maximum temperatures. The
red curve is the bimodal distribution fitted to the histogram.

The monthly average and standard deviation of maximum temperatures,
divided between values before and after 1901, are presented in Fig.6.2.
Compared to the interval 1814-1900, the period 1901-2003 features higher
averages from April to October and lower averages in the other months.
The standard deviation plot is similar both qualitatively and quantitatively
to the one reported in Fig.5.2, with the lowest values recorded in September
and November.
The yearly average of maximum temperature ranges from 16.0°C, recorded
in 1850, to 21.2°C, recorded in 2000. Their values and the 9-year moving
average are reported in Fig.6.3; the smoothed data shows periodic oscil-
lations, with the highest peak reached between 1867 and 1878. The data
follows a positive linear trend, with increasing slope for the more recent
intervals.

The increase in temperature reduces significantly the number of days in a
year with daily maximum temperature below 0°C, as shown in Fig.6.4. The
highest value is 26 days in 1830, and the following peaks decrease gradually
in value for over a century; over the last 50 years of the series the peaks
drop from 18 days in 1963 to 10 in 1985, and no other local minimum above
5 days is recorded afterwards.
The number of hot days in a year is presented in Fig.6.5; the smoothed
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Figure 6.2: Monthly mean (left) of maximum temperatures and correspond-
ing standard deviation (right). The blue series refers to the period 1814-
1900, and the orange one to 1901-2003.

Figure 6.3: Yearly average of maximum temperature (blue line) and 9-year
moving average (red line); the linear trends computed over the whole period,
the last 100, 50 and 30 years of the series are highlighted in a dashed blue,
red, orange and yellow line respectively.
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Figure 6.4: Number of frost days in a year (blue line), smoothed average
with a 9-year window (red line) and linear trend (dashed red line).

average in particular highlights the peak between 1860 and 1879 and the
gradual increase of the last century of the series. The maximum number of
days in a year with maximum temperature above 30°C is 100 in 1877; the
last 50 years of the series feature a maximum of 81 hot days in 1998, and a
minimum that increases from 23 in 1968 to 33 in 2002.
Differently from what observed in the previous case studies, the series
always feature heat waves, as shown in Fig.6.6. The lowest intensity
of heat wave is 29.43°C in 1940, and it also corresponds to the lowest
duration of 6 days; the maximum duration and intensity of heat wave,
instead, are recorded in 1873 and 2000 respectively. The local minima and
maxima increase slightly in the last 60 years of the series, but it is harder
to define a linear trend for either the intensity or intensity of the heat waves.
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Figure 6.5: Number of days in a year with maximum temperature above
30°C (blue line), and smoothed average with a 9-year window (red line).

Figure 6.6: Maximum intensity of the heat waves detected each year, as
defined by Mercalli [17], and maximum length of the heat wave, i.e. number
of consecutive days with maximum daily temperatures ≥ 28°.
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Degree Metrics

Graph Mean Std dev Skewness Kurtosis

HVG 3.842 1.921 1.628 6.982
HVG (DT) 3.998 2.055 1.612 6.824
HVG (DS) 3.999 2.085 1.723 7.554

VG 10.08 11.13 2.602 11.41
VG (DT) 10.06 11.06 2.597 11.44
VG (DS) 7.707 6.563 3.659 31.00

Table 6.1: First four moments of the degree for the HVG, VG and their
detrended (DT) and deseasoned (DS) counterparts, computed over the full
series.

6.2 Visibility graphs

6.2.1 Degree metrics

The first four moments of the degree for the HVG, VG and their detrended
and deseasoned counterparts computed on the full series are presented in
table 6.1. All the metrics for the VGs are greater than the corresponding
value for the HVGs; the relative difference between a graph and its desea-
soned counterpart is greater for the VG than the HVG. For example the
degree kurtosis of the deseasoned VG is more than double the correspond-
ing value for the VG and its detrended counterpart. The mean and standard
deviation of the HVG are slightly lower than the corresponding values for
the detrended HVG, and these are lower w.r.t. the deseasoned HVG; the
same applies to the kurtosis of the VGs. On the other hand, the mean and
standard deviation of the deseasoned VG are lower than the values for the
detrended VG, and these are lower w.r.t. the VG.
The degree moments for the graphs computed on 4 and 7 intervals are shown
in figure 6.7. Each metric is characterized by a significant linear trend, that
is positive for the mean and standard deviation of the HVGs, the skewness
and kurtosis of the VGs and negative otherwise. There are 3 instances where
the slope differs in sign depending on the partition considered, specifically
the mean of the deseasoned HVG and the skewness and kurtosis of the de-
seasoned VG; nevertheless, the data points of the red and blue series for
each plot are very close in value.
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(a) Mean (b) Standard deviation

(c) Skewness (d) Kurtosis

Figure 6.7: First four moments of the degree for the HVG, VG and their
detrended (DT/DT loc) and deseasoned (DS) counterparts, computed over
5 intervals (blue line) and 10 intervals (red line). The corresponding linear
trends are highlighted with a dashed line when significant.
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6.2.2 Assortativity

The neighborhood connectivity of the HVGs and VGs computed over 4
and 7 intervals are reported in figures 6.8 and 6.9 respectively. The plots
correspond qualitatively to those discussed in section 5.2.2; in particular
those related to the HVGs are also very similar quantitatively. The largest
difference between the partitions is found in the neighborhood connectivity
plot of the VG: the data points of the oldest interval cross the bisector for
lower degree values for the graphs computed over 10 intervals.

6.2.3 Time reversibility

The irreversibility ratios relative to the HVGs and VGs computed over
7 and 4 intervals are presented in table 6.3. The VG and its detrended
counterpart lead to irreversibility on every interval of both partitions
considered; the same applies to the deseasoned HVG as well. Similarly
the HVG leads to intervals that are irreversible with extreme confidence,
with the exception of 1923-1949 that is reversible with weak confidence.
The series is mostly irreversible also w.r.t. the deseasoned VG; only one
interval for each partition is reversible with weak confidence, but there is no
overlap between them. Reversible intervals are detected only in relation to
the detrended HVG, and they cover the period 1842-1949 in both partitions.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 6.8: Neighborhood connectivity for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 5 intervals.
The bisector y = x is highlighted with a red dashed line for each plot.
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(a) HVG (b) VG

(c) HVG (DT) (d) VG (DT)

(e) HVG (DT loc) (f) VG (DT loc)

(g) HVG (DS) (h) VG (DS)

Figure 6.9: Neighborhood connectivity for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 10 intervals.
The bisector y = x is highlighted with a red dashed line for each plot.
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Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1814-1841 82.22 50.90 147.9 16.62

1842-1868 12.89 5.205 0.5631 0.8165

1869-1895 15.95 10.51 48.34 -3.186

1896-1922 13.92 8.386 -0.9912 -0.08822

1923-1949 3.835 4.612 -1.981 0.3315

1950-1976 39.86 17.17 44.24 24.74

1977-2003 36.46 22.78 12.33 24.35

Period VG VG DS VG DT loc VG DT

1814-1841 41.10 30.43 24.22 47.91

1842-1868 12.80 5.537 5.250 14.55

1869-1895 11.65 7.653 8.889 17.09

1896-1922 13.56 7.031 8.028 16.18

1923-1949 8.234 2.632 5.953 9.528

1950-1976 19.91 10.38 12.64 25.02

1977-2003 20.59 8.997 14.25 24.92

Table 6.2: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 7 intervals.
The coloring of the cells associates green to IR ≤ 1 (reversibility), lime to
1 < IR ≤ 4 (reversibility with weak confidence), yellow to 4 < IR ≤ 10 (ir-
reversibility with strong confidence) and orange to IR > 10 (irreversibility
with extreme confidence).
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Irreversibility ratio (IR)

Period HVG HVG DS HVG DT loc HVG DT

1814-1841 116.1 61.51 341.9 8.319

1842-1895 34.91 18.80 -2.170 -1.110

1896-1949 22.61 20.29 -5.148 -2.644

1950-2003 103.5 56.85 53.38 24.98

Period VG VG DS VG DT loc VG DT

1814-1841 15.96 17.98 27.48 25.42

1842-1895 6.238 3.937 14.48 13.94

1896-1949 6.196 5.579 8.738 10.99

1950-2003 12.80 12.62 22.70 22.93

Table 6.3: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 4 intervals.
The coloring of the cells associates green to IR ≤ 1 (reversibility), lime to
1 < IR ≤ 4 (reversibility with weak confidence), yellow to 4 < IR ≤ 10 (ir-
reversibility with strong confidence) and orange to IR > 10 (irreversibility
with extreme confidence).

6.2.4 Motif detection

A motif detection algorithm is applied to the HVG computed over 4 and
7 intervals, the VG computed over 7 intervals and all their deseasoned
counterparts; the most relevant frequency plots are presented in Fig. 6.10.
As already observed in the previous examples, motifs D and A are more
frequent for the HVGs, whereas motif D is the most frequent in the VG;
moreover the range of each motif frequency is similar to that of the other
case studies.
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Figure 6.10: Frequencies of motifs A, B and D (left, center and right column
respectively) for the HVGs computed over 4 intervals (top row), 7 intervals
(center row) and for the VGs computed over 7 intervals (bottom row). The
orange and red lines correspond to the original underlying time series, and
the blue dashed line to its deseasoned counterpart.
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Chapter 7

Discussion and Conclusions

7.1 Case study comparisons

The main results of the case studies are here summarized and compared. As
shown in Tab. 7.1, the daily maximum temperatures recorded in Prague are
generally lower than those of Turin and Bologna: the coldest and hottest
temperatures are lower, and so are the peaks of relative frequency. For each
series the yearly average of maximum temperatures is characterized by a
positive linear trend that is particularly evident in the most recent decades
of observations; this coincides with a significant reduction in the number of
frost days per year. On the other hand the heat wave analysis shows only
for the Turin series a clear increase in heat wave intensity and duration in
recent years.

For each visibility graph computed, the first three moments of the
degree have similar values, as shown in tables 7.1 and 7.2. Moreover the
metrics associated to a HVG and its detrended and deseasoned counterparts
are very close in value, and the same applies to a VG and its detrended
counterpart.
The neighborhood connectivity plots display very similar qualitative and
quantitative features for all the case studies: the majority of points lie
below the bisector for values of degree greater or equal to 5 for the
HVGs and 13 for the deseasoned VGs; for the VGs and their detrended
counterparts the bisector is crossed for values of degree between 21 and
30 depending on the interval of the series considered. The highest level of
disassortativity for high degree nodes is observed for the deseasoned VGs,
and the points belonging to different intervals are a lot more scattered
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for the VGs and detrended VGs on the Turin series. It is important to
note that the series points that are most scattered belong to the oldest
intervals, which coincidentally were the most affected by missing values
and inhomogeneities. An example of the neighborhood connectivity plots is
reported in Fig. 7.1 for reference.

Mean Standard deviation

Graph T P B T P B

HVG 3.898 3.902 3.842 2.035 1.921 1.921
HVG (DT) 3.999 3.999 3.998 2.133 2.006 2.005
HVG (DS) 3.999 3.999 3.999 2.147 2.030 2.085

VG 9.163 9.314 10.08 10.09 9.235 11.13
VG (DT) 9.168 9.324 10.06 10.09 9.240 11.06
VG (DS) 7.485 7.877 7.707 6.716 6.185 6.53

Skewness Kurtosis

Graph T P B T P B

HVG 1.724 1.530 1.628 7.803 6.364 6.982
HVG (DT) 1.738 1.542 1.612 7.926 6.439 6.824
HVG (DS) 1.766 1.642 1.723 7.996 7.180 7.554

VG 2.920 2.788 2.602 14.65 13.89 11.41
VG (DT) 2.918 2.786 2.597 14.62 13.88 11.44
VG (DS) 4.070 2.950 3.659 37.92 20.19 31.00

Table 7.2: First four moments of the degree for the HVG, VG and their
detrended (DT) and deseasoned (DS) counterparts, computed over the full
series of Turin (T), Prague (P) and Bologna (B).

In order to compare the irreversibility ratio IR, the series have been divided

Turin Prague Bologna

min -7.8°C -20.5°C -8.2°C
max 39.7°C 37.8°C 40.7°C

peak 1 9°C 5°C 8°C
peak 2 26°C 20°C 28°C

Table 7.1: Minimum, maximum temperature and peaks of relative frequency
for the daily maximum temperature series of Turin, Prague and Bologna.
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(a) HVG (DT loc) - Prague (b) VG (DT loc) - Turin

(c) VG (DS) - Prague (d) VG (DT loc) - Prague

Figure 7.1: Examples of neighborhood connectivity plots for the locally
detrended (DT loc) and deseasoned (DS) visibility graphs; in these cases
the series of Prague and Turin are divided in 7 and 10 intervals respectively.
The bisector y = x is highlighted with a red dashed line for each plot.

in 21 and 43-year long intervals, starting from 1828 and ending in 2003.
The results are presented in tables 7.3 and 7.4, and they show that the
series of Prague and Bologna tend to be similar in terms of irreversibility.
The deseasoned VGs generally feature lower values of IR with respect to the
corresponding VGs, which leads to a higher number of reversible intervals
with weak confidence; similarly, the detrended HVGs are characterized by
a lower number of irreversible intervals compared to the corresponding
HVGs. This applies to both detrended variants in the case of 21-year long
intervals, but it only holds for the “globally” detrended HVGs if 43-year
long intervals are considered.
As already mentioned, the relative frequency of motifs detected is quite
similar for all case studies: for HVGs and deseasoned HVGs the most
frequent motifs are A and D, followed by B, whereas for VGs and deseasoned
VGs there is a much higher frequency of motif D, followed by motifs B and
A. The motif frequency plots associated to the case study of Turin have
been reported in Fig. 7.2 to provide a quantitative reference.
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Irreversibility ratio (IR)

HVG DS DT loc DT

Period T P B T P B T P B T P B

1828-1849

1850-1871

1872-1893

1894-1915

1916-1937

1938-1959

1960-1981

1982-2003

VG DS DT loc DT

Period T P B T P B T P B T P B

1828-1849

1850-1871

1872-1893

1894-1915

1916-1937

1938-1959

1960-1981

1982-2003

Table 7.3: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 8 inter-
vals that are 21-years long. The coloring of the cells associates green to
IR ≤ 1 (reversibility), lime to 1 < IR ≤ 4 (reversibility with weak confi-
dence), yellow to 4 < IR ≤ 10 (irreversibility with strong confidence) and
orange to IR > 10 (irreversibility with extreme confidence).
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Irreversibility ratio (IR)

HVG DS DT loc DT

Period T P B T P B T P B T P B

1828-1871

1872-1915

1916-1959

1960-2003

VG DS DT loc DT

Period T P B T P B T P B T P B

1828-1871

1872-1915

1916-1959

1960-2003

Table 7.4: Irreversibility ratio for the HVG, VG and their detrended
(DT/DT loc) and deseasoned (DS) counterparts, computed over 4 inter-
vals 43-years long. The coloring of the cells associates green to IR ≤ 1
(reversibility), lime to 1 < IR ≤ 4 (reversibility with weak confidence), yel-
low to 4 < IR ≤ 10 (irreversibility with strong confidence) and orange to
IR > 10 (irreversibility with extreme confidence).

7.2 Final remarks

Three long term daily maximum temperature series have been analyzed:
the series of Turin, Prague and Bologna span over 268, 180 and 190
years respectively. The homogenization of the first series is performed by
taking into account the metadata, whereas the other two series have been
homogenized by an automated procedure that is blind to metadata; in this
way the climatic signal is isolated and can be considered as a reliable input
for the following climate analysis. Data inputation is performed where
necessary to eliminate a small and generally sparse number of missing
values.
The HVG and VG algorithms are then employed to investigate the
structural similarities of the underlying time series, and the same methods
are also applied to the deseasoned and detrended series to get further
insight; for each graph the first four moments of the degree, neighborhood
connectivity, time reversibility and motif frequency are computed. As
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Figure 7.2: Frequencies of motifs A, B and D (left, center and right column
respectively) for the HVGs (top row) and VGs (bottom row) computed over
10 intervals on the series of Turin. The orange and red lines correspond to
the original underlying time series, and the blue dashed line to its deseasoned
counterpart.

discussed in the previous section, the graphs have several qualitative and
quantitative features in common: for instance they are disassortative, as
high degree nodes tend to be linked to nodes of lower degree. In particular
for the HVGs and their detrended and deseasoned counterparts the average
degree of nodes connected to any given reference node in the graph does
not depend on its degree.
The time irreversibility of subintervals of the series is evaluated through
the irreversibility ratio: Lacasa et al. [14] introduced it in relation to the
HVGs, but the same concept can be applied to the VGs. The results can be
affected by the distinction between HVG and VG, as well as the choice of
length of intervals. In particular the series evaluated through the VGs and
their detrended counterparts may flag more intervals as irreversible with
respect to the HVGs. The results that will be considered more relevant
are those associated to the locally detrended and deseasoned VG; for these
graphs there is a higher level of coherency between the two partitions
considered, with most intervals being irreversible or at most reversible with
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Irreversibility ratio (IR): VGs

DTDS DS DT loc

Period T P B T P B T P B

1828-1849

1850-1871

1872-1893

1894-1915

1916-1937

1938-1959

1960-1981

1982-2003

Table 7.5: Irreversibility ratio for the locally detrended and deseasoned
(DTDS), deseasoned (DS), and locally detrended (DT loc) VGs, computed
over 8 intervals. The coloring of the cells associates green to IR ≤ 1 (re-
versibility), lime to 1 < IR ≤ 4 (reversibility with weak confidence), yel-
low to 4 < IR ≤ 10 (irreversibility with strong confidence) and orange to
IR > 10 (irreversibility with extreme confidence).

weak confidence. The choice of VGs over HVGs is justified by the ability of
the former to retain more information about the structure of the underlying
time series; similarly, decoupling the time series from its trend and/or
seasonality allows an analysis of the irreversibility of the base signal, i.e. the
oscillations in temperature. The presence of a local trend implicitly affects
the computation of the average year of any given interval and is therefore
accounted for to some extent, as shown in table 7.5; for this kind of graph
the finer partition of the series may be preferable. The irreversibility ratio
obtained for the deseasoned VGs tends to be lower than the corresponding
values for the locally detrended VGs, confirming the impact of seasonality
on the irreversibility of the underlying series.
The discrepancy of IR depending on the length of the intervals should be
further investigated in order to justify the results obtained and provide a
guideline for other similar applications of this method.
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