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Sommario 

Lo studio dei flussi turbolenti è stato da sempre oggetto di grande interesse 

nell'ambito della ricerca fluidodinamica. La turbolenza, infatti coinvolge molti aspetti 

della vita quotidiana, dai fenomeni naturali (come le correnti oceaniche e 

atmosferiche) alle applicazioni industriali (tra cui, ad esempio, flussi nei tubi, turbine, 

processi chimici e di combustione o nelle estremità alari di velivoli ad ala fissa e 

rotante). Nonostante sia largamente presente nelle applicazioni pratiche, tuttavia, la 

turbolenza rappresenta una delle più grandi sfide della ricerca scientifica; ad oggi, 

infatti, gli strumenti a disposizione — sia concettuali, sia sperimentali — non riescono 

a fornire un approccio generale alla risoluzione dei problemi riguardanti la turbolenza. 

Gli approcci più comuni sono quindi di tipo numerico e sperimentale, le cui 

simulazioni  forniscono un enorme quantità di dati, i quali necessitano di essere 

opportunamente esaminati ed interpretati.  

Con lo scopo di ottenere una maggiore e migliore comprensione delle dinamiche dei 

flussi turbolenti e della loro caratterizzazione spaziale, nuovi e alternativi approcci di 

carattere multidisciplinare e nuovi strumenti di analisi divengono dunque necessari 

per un'appropriata valutazione statistica della turbolenza. In tale contesto, la teoria 

delle reti complesse — combinando elementi della teoria dei grafi e della fisica 

statistica — fornisce un potente strumento per lo studio di sistemi complessi, tra cui i 

flussi turbolenti, i quali sono composti da un elevato numero di elementi che 

interagiscono dinamicamente nel tempo. Sebbene ampiamente usata con successo in 

molte applicazioni pratiche (dalla sociologia e l'economia alla biologia, informatica e 

alla viabilità dei mezzi di trasporto), negli ultimi anni relativamente pochi approcci 

alla turbolenza basati sulla teoria delle reti complesse sono stati proposti. La maggior 

parte di questi, comunque, si basa sulla trasformazione di ciascuna serie temporale — 

valutata in differenti posizioni del flusso — delle grandezze fisiche misurate (ad es. 

energia o temperatura) in una corrispettiva rete complessa. Nel presente lavoro, 

invece, un'unica rete viene costruita a partire dai dati spazio-temporali acquisiti. 

Un nuovo metodo di analisi dei flussi turbolenti, basato sulle reti complesse, viene 

quindi qui proposto — in alternativa soprattutto ai classici metodi statistici — con lo 

scopo di offrire una migliore comprensione della caratterizzazione spaziale delle 

dinamiche della turbolenza. Inoltre, i risultati successivamente mostrati sono stati 

sottoposti per pubblicazione nella rivista scientifica Europhysics Letters (EPL) e sono 

stati accettati per essere esposti come presentazione orale all'ottava conferenza EPFDC 

(European Postgraduate Fluid Dynamics Conference). 
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Introduction 

Turbulence is an important and widely investigated topic which involves several 

aspects of everyday life, from natural phenomena (as oceanic or atmospheric currents) 

to research and industrial applications (as flow through pumps, turbines, chemical 

reactors, and aircraft-wing tips). Although it is so common in practical applications, 

turbulence represents one of the greatest scientific research challenges and an 

unsolved problem because so far both conceptual and experimental tools fail to 

provide a general approach to the solution of problems in turbulence. Richard 

Feynman said [1]: "Turbulence is the most important unsolved problem of classical 

physics", but many other quotes pointed out the importance of turbulence as well its 

high complexity.  

Nowadays, experimental and numerical simulations provide a great amount of 

detailed data but these need to be examined and interpreted properly. Therefore, in 

order to achieve a better description of the dynamics and spatial characterization of 

turbulence, alternative, interdisciplinary approaches and investigative tools become 

necessary for appropriate statistical analyses. In this context, complex network theory 

— by combining graph theory and statistical physics — provides a powerful tool to 

analyze complex systems, just as turbulent flows, consisting of a huge number of 

dynamically interacting elements.  

Despite widely and successfully used in other applications (from sociology and 

economics to biology, informatics, transportation and drivability), in the last years 

only few network-based approaches to turbulence have been proposed, mainly to 

study two-phase flows, turbulent jets or fully developed turbulent flows. Most of them 

focuses on temporal data measured in different spatial locations and, by means of the 

visibility algorithm [2] or recurrence plots [3], convert each time series into a network. 

Differently to what carried out so far, in this work each temporal series is not 

transformed into a network but a single global network from spatio-temporal data is 

constructed. 

With this work a new approach to analyze turbulent flows through the complex 

networks is then proposed, trying to provide a better comprehension of the spatial 

characterization of the dynamic of turbulence and to overcome the limitations of the 

classic statistical methods. 

The results achieved in this work have been submitted for publication to 

Europhysics Letters (EPL) journal [4] and have been accepted for oral presentation at 

the next 8th European Postgraduate Fluid Dynamics Conference (EPFDC)[5]. 

More in detail, the study of a forced isotropic turbulent field is carried out; the 

network is built starting from the evaluation of the correlation coefficients of the 

turbulent kinetic energy, getting a single framework from spatio-temporal data. The so 
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obtained network is studied both by using typical structural and topological metrics of 

complex network theory — such as centrality metrics, clustering and community 

detection — and by introducing new, ad hoc, metrics — as the average physical 

distance. 

 

The thesis is thus organized as follows. 

In Chapter 1 turbulence is discussed from a general point of view. First, the 

properties which characterize turbulent flows are briefly reported. Then, the main 

difficulties encountered in dealing with turbulence and the classical approaches to the 

problem are summarized. 

Chapter 2 is about the complex network theory. This topic is introduced with an 

overview of applications and then it is explained in its structural properties. The main 

definitions and the metrics used in this work are then listed and expounded. Finally, 

two short reviews are presented: the first one reports the typical features and 

properties of real and spatial networks, while the second one is an outline of the 

generally used tools to analyze and visualize large complex networks. 

Chapter 3 is dedicated to the description of the assumptions and of the operative 

steps which led to the network building. The first part contains a description of the 

turbulence database acquired and the pre-processing stages. The hypotheses and the 

procedures that have been used are then explained and illustrated. In the last part of 

the chapter, instead, a short overview about the recent development of the complex 

network approach to turbulence is provided. 

Finally, Chapter 4 contains a critical analysis of all the results obtained as a 

consequence of the post-processing stage. After a general description of the main 

features of the network under consideration, the outcomes of the examination of 

complex network metrics are showed and widely discussed. Therefore the physical 

interpretation of results is reported. The chapter ends with two analyses of sensitivity 

of two parameters of the network building and a further study applied to a different 

turbulent region of the same fluid flow domain. 

Concluding remarks, future developments and possible applications are discussed 

in the Conclusions section. 
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Chapter 1:  

An Overview of Turbulent Flows 

1.1 Basic concepts 

An easy explanation of what is the turbulence or a turbulent flow is generally an 

hard task because of the lack of a clear definition. The best way to clarify these 

concepts is to show several examples of turbulent flows in our everyday surroundings. 

In reality, most flows occurring in industrial applications and in nature are turbulent. 

Typical examples in which at least a part of fluid is turbulent are: the smoke from a 

cigarette or a chimney; the flow around bluff bodies or the wakes of cars, ships, 

aircrafts and bicycles; the terrestrial atmospheric; the blood flow; most combustion 

processes; the river and oceanic currents and so on. The counterpart of a turbulent 

flow is said a laminar flow. Intuitively, a laminar flow is a simple and regular flow, 

instead a turbulent flow is a chaotic, random, and whirling flow (Fig. 1.1-1, Fig. 1.1-2). 

 

Fig. 1.1-1: Symmetric plane flow past an NACA 64A015 airfoil at zero incidence in a water tunnel;         [6]. 
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Fig. 1.1-2: Wrinkling of a fluid surface in isotropic turbulence [6] . 

As the reader can easily imagine, thus, turbulence is the rule while laminar flows are 

a rare exception. The answer to the question "why is it so difficult to define precisely a 

turbulent flow?" probably comes directly from what said before, i.e. because of the 

great diversity of occurrence and its apparently random and chaotic nature. It is 

important to point out the meaning of "random" in this context. A variable is random 

if it does not have a unique value every time an experiment is repeated under the same 

set of conditions. However, the Navier-Stokes (NS) equations are valid both for 

laminar and turbulent flows and they present a deterministic nature. Therefore, the 

random character of the variables of a turbulent flow (visible for example in a time-

history of a component of the velocity field, Fig. 1.1-3) does not come from the NS 

equations but from its "context", its "environment", i.e. the set of initial conditions 

that includes the initial and boundary conditions and material properties. In 

particular, two aspects play a key role: 

1) perturbations in the set of initial conditions, that are almost unpredictable 

and — above all — they are unavoidable; 

2) turbulent flow fields display an acute sensitivity to such perturbations; the 

sensitivity of a flow can be expressed as follows: two different flows with 

nearly the same set of initial conditions move rapidly apart with time, i.e. 

slight differences in initial conditions lead to large different behaviors later 

(state-space view). 
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Fig. 1.1-3: The time history of the axial component of velocity     ) on the centerline of a turbulent jet [7]. 

 The combination of these two factors explains the apparent random and chaotic 

nature of turbulence. It is worth the effort to underline that both the elements 

contribute to explain this aspect of a turbulent flow. The perturbations in initial and 

boundary conditions and material properties, indeed, are also present in laminar 

flows, but the extreme sensitiveness of turbulent flows is the trigger of such a behavior 

which is also referred as deterministic chaos. Turbulence theory, therefore, does not 

attempt to deal with all kinds of flows in a general way but it concentrates on families 

of flows with fairly simple boundary conditions (like boundary layers, jets and wakes). 

Nonlinearity of NS equations is crucial to the appearance of chaos and is also 

important in generating and maintaining turbulence. The theory of chaos was 

summarized very efficiently by Edward Lorenz as [8]: "Chaos: When the present 

determines the future, but the approximate present does not approximately 

determine the future". That is the case of turbulent flows. 

1.2 General properties of turbulence 

In order to overcome the limitation in the definition of turbulence, it is possible to 

specify a set of general properties common to almost all the turbulent flows. 

Furthermore, this procedure helps to give a deeper view of the physical nature of 

turbulence, rather than a simple definition. Below, the main characteristics of a 

turbulent flow are listed [9],[10]. 

 IRREGULARITY or RANDOMNESS. 

This property was discussed before and it concerns the large number of 

spatial degrees of freedom and the consequently impossibility to use a 

deterministic approach to turbulence problems.  

 DIFFUSIVITY 

The diffusivity of turbulence is an important feature which causes rapid 

mixing and increased rates of mass transfer, momentum and heat. If a 
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flow pattern looks random but does not exhibit spreading of velocity 

fluctuations through the surrounding fluid, it is not turbulent. The 

contrails of a jet aircraft are a typical example where the flow is turbulent 

only when it was generated and then it extends for long distances with a 

nearly constant diameter.  

 LARGE REYNOLDS NUMBER 

Turbulent flows always occur at high Reynolds numbers,   . The Reynolds 

number is the ratio of the nonlinear inertial forces, responsible for the 

flow instability, to the linear dissipative damping, which converts kinetic 

energy into thermal energy. Turbulence often originates as an instability of 

laminar flows if the Reynolds number becomes large enough (the value 

depends on specific experiment). In general, a system in a state of 

equilibrium is said unstable if any perturbations from the equilibrium 

state are amplified by the system itself, usually leading the system to 

another completely different equilibrium state or to the so called 

"divergence". In a flow, instabilities are related to the interaction of 

viscous terms and nonlinear inertia terms in the equations of motion. 

With rising Reynolds number, the nonlinear convective term in the 

Navier-Stokes equations assumes increasing importance compared to the 

viscous term, and the tendency to instability, which is damped by 

viscosity, increases. 

 WIDE RANGE OF SCALES 

The "jiggle" in velocity measurements at high    (Fig. 1.1-3) reflects the 

existence of a continuum of different space and time scales of the flow. The 

large scales are evident in the overall fluctuations of a graph of velocity 

versus spatial position or time, whereas small ones are visible through the 

fine-scale oscillations. A graph of velocity as a function of position is furry 

when the large scales of a high Reynolds number flow are considered. 

Applying higher and higher magnifications, one eventually finds a scale at 

which the velocity is revealed to be a smooth function, defining the 

smallest scales of the flow. Smoothness reflects viscous action and thus the 

size of the smallest scales depends on the viscosity.  

The size of the large scales is typically fixed by the overall geometry of the 

flow whereas that of the smallest ones adjusts itself according to the 

viscosity. Quantitative measures of large scales in a turbulent flow can be 

made using the concept of temporal and spatial correlation of velocities. 

Correlation is a statistical parameter that reveals how velocities in two 

points or two times change together. Hence, scales defined using 

correlations give an idea of the size (in space and/or in time) of the largest 

turbulent structures. The smallest scale associated with turbulence, 

instead, mainly dictated by viscosity and by energy dissipation rate, is 

referred as the Kolmogorov length scale,  . 

 

 



New insights into spatial characterization of turbulent flows: a complex network-based analysis  

 
 

5 
 

 A CONTINUUM PHENOMENON 

Turbulence is a continuum phenomenon, i.e. the smallest scales are 

ordinarily far larger than any molecular length scale. In other words, 

defining as   the size of the smallest turbulent scale and   the mean free 

path, the Knudsen number of a turbulent flow is typically         . 

Exceptions may occur for gases and plasma if the turbulent Mach number 

is large enough. 

 THREE-DIMENSIONAL and ROTATIONAL 

Turbulence is rotational and three-dimensional. In particular, turbulence 

is characterized by high levels of fluctuating vorticity that could not 

maintain itself if the velocity fluctuations were two dimensional. An 

important vorticity-maintenance mechanism is known as vortex 

stretching and it is an inviscid typical three-dimensional mechanism. In 

summary, turbulence exhibits high levels of three dimensional fluctuating 

vorticity. 

 DISSIPATION 

Turbulent flows are always dissipative; viscous shear stresses work to 

increase the internal energy of the fluid at the expense of kinetic energy of 

the turbulence. Therefore, if there is no energy supply to maintain the 

flow, turbulence decays and eventually ceases to be active because the 

Reynolds number is no longer large enough. 

 A FLUID FLOW FEATURE 

Turbulence is not a feature of fluids but of fluid flows. Most of the 

dynamics of turbulence is the same in all fluids, provided that the 

Reynolds number is large enough. 

 SMALL-SCALE RANDOM VORTICITY 

Turbulent flows are rotational, i.e. they contain vorticity. This is defined as 

the curl of the velocity,        , thus involving its spatial derivatives, 

and represents rotation of small fluid particles about their centroid.  

Laminar flows can also posses vorticity but, a characteristic of high 

Reynolds number turbulence is that the vorticity has intense, small-scale, 

random variations in both space and time. Furthermore, the magnitude of 

these vorticity fluctuations is much larger than the mean vorticity and they 

are randomly orientated in direction.  

Qualitatively, vortex convection and vortex stretching — far from being 

fully understood — may be thought as the two inviscid mechanisms by 

which the intense, small-scale vorticity fluctuations of high    turbulence 

are generated and maintained. Conversely, viscous diffusion tends to 

cause vorticity to spread, counteracting both the intensity amplification 

and scale-reducing effects of vortex stretching. In particular, since the 

viscous diffusive term contains second derivatives in space, it increases in 

importance as the scale considered decreases.  
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In conclusion, viscous diffusion of vorticity places both a lower limit (the 

Kolmogorov scale) on the size of vortical structures attainable by 

stretching, resulting in the velocity field being smooth when viewed at 

such scales, and an upper limit on the amplification of vorticity 

fluctuations.  

 LARGE SCALE INSENSITIVITY TO VISCOSITY 

If the turbulent Reynolds number is "high enough", the dynamics of the 

large scales are essentially inviscid and hence insensitive to the precise 

value of the large Reynolds number. While the size of the smallest scales 

changes according to the fluid viscosity so as to dissipate energy — at an 

appropriate rate controlled by the large scales — , the smallest scales are 

thought to have little direct effect on the large ones, which interact mainly 

with scales immediately below them in the cascade.  

Hence, those properties of turbulence which are determined by the large 

scales should be largely unaffected by changes in the viscosity. This leads 

to the conjecture that, as instance, the mean energy dissipation rate, mean 

velocity and root-mean-squared velocity fluctuations of a turbulent flow 

approach limiting values as the Reynolds number tends to infinity (or at 

least that they ought to vary much more slowly with changes in the 

Reynolds number). Furthermore, although viscous dissipation of energy is 

dominated by the smallest scales, the average rate of energy dissipation 

reflects the mean rate of energy supplied from the large scales and it is 

consequently also believed to tend to a limit as the viscosity goes to zero. 
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1.3 Techniques for the study of turbulence 

1.3.1. General considerations 

Turbulent flows have been investigated for more than a century, but no general 

approach to the solution of problems in turbulence exists. The equations of motion 

have been analyzed in great detail, but it is still next to impossible to make accurate 

quantitative predictions without relying heavily on empirical data [9]. Many different 

techniques have been developed to overcome many different problems regarding 

turbulence and turbulent flows. As discussed earlier, at large enough Reynolds 

numbers there is a great separation of scales having different behaviors determined by 

different factors (overall geometry on one side, viscosity and energy dissipation rate on 

the other). This assumptions suggest different approaches on solving and prediction of 

different scales in turbulent flows. In general, studies on turbulent flows can be 

divided roughly into three categories [7]: 

I) Discovery. Experimental or simulation studies, aimed at providing 

qualitative or quantitative information about particular flows. 

II) Modelling. Theoretical or modelling studies, aimed at developing tractable 

mathematical models that can predict properties of turbulent flows. 

III) Control. Studies aimed at manipulating or controlling the flow or the 

turbulence in a beneficial way, usually involving both experimental and 

theoretical components. 

The objective of first category is to develop an understanding of the dominant 

physical processes of simple turbulent flows, and how they are related to the equations 

of motions. For studies in the second category, instead, the word tractable is crucial as 

better explained later. The studies concerning the second category can also be used in 

some studies of the third category.  

Let us focus on second category listed before, in particular the meaning of tractable 

adjective. The NS equations describe in details fluid flows — laminar and turbulent — 

so that the amount of information deriving from a direct approach of solving NS 

equations is impossible to handle in practice. Thus, NS equations, despite their 

accuracy, do not provide a tractable approach for turbulent flows. The direct approach 

is called Direct Numerical Simulation (DNS); while it is intractable for high-   flows 

(the computational cost for DNS grows with    ), it can be useful as a research tool for 

simple turbulent flows at moderate Reynolds number. For high-   flows the natural 

alternative to DNS is the statistical approach. A model based on statistical variables 

(such as mean velocity field) can lead to a tractable set of equations, because statistical 

fields vary smoothly in space and time (Fig. 1.3-1). However, by introducing a model it 

is inevitable to lose some information — according to the characteristics of the model 

— or it is not possible to generalize the specific model considered for all families of 

turbulent flows. Hence, for each experiment involving a turbulent flow there will be an 

appropriate model that approximates, as best as it can, the real flow.  
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Fig. 1.3-1: The mean axial velocity      profile in a turbulent jet with         , normalized by its value on the 

centerline      ; the cross-stream (radial) coordinate    is normalized by the distance from the nozzle    [7]. 

It is worth the effort to distinguish between the two definition of turbulent-flow 

simulation and turbulence model: in the former, equations are solved for time-

dependent velocity field that represents the velocity field for one realization of the 

turbulent flow; in the latter, instead, equations are solved for some mean quantities. 

However, the word "model" is generally used to refer both to simulations and to 

turbulence models. Typical example of simulations are the DNS and the Large-Eddy 

Simulation (LES). In LES, equations are solved for a "filtered" velocity field which is 

representative of the large-scale turbulent motion — which are of most interest in 

several practical cases — while the small-scale motion is represented with simple 

models (because the smaller scales are responsible for fine grids in numerical 

simulations and make calculations expensive).  

Since there is a broad range of different turbulent flows, it is useful and appropriate 

to have a broad range of models that vary in their attributes. The principal criteria that 

can be used to assess different models are [7]: 

 Level of description, i.e. the amount of information determined with the 

model; DNS, as instance, has the highest level of description. 

 Completeness. A model is said complete if constituent equations of the model 

are free from flow-dependent specifications (i.e. material properties, 

boundary and initial conditions). 

 Cost and ease of use, i.e. the computational difficulty to perform a calculus in 

terms of CPU time and flops, memory, algorithm developing. 

 Range of applicability. Not all models are applicable to all flows. However, a 

model is applicable to a flow if the model equations are well posed and can be 

solved, even if the solutions are not accurate. Computational requirements 

place limitations on the applicability of some models as in DNS, where the 

computational requirements rise steeply with Reynolds number. 

 Accuracy. This can be determined by comparing model calculations with 

experimental measurements and it is a desirable attribute of any model. The 

accuracy is affected by errors of measurements and numerical errors, mainly 

coming from the impossibility to set the same initial and boundary 

conditions of the real flow experiment. 
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The suitability of a particular model for a particular turbulent-flow problem 

depends on a weighted combination of the criteria listed above.  

1.3.2. Statistical approach to turbulence 

 The apparently random character of turbulent flows, as depicted in the previous 

sections, suggests a statistical approach. In particular, thank to the increasing 

computational power of modern computers, the relevant properties of turbulent flows 

can be calculated numerically. The detailed behavior of the flow in any realization is 

extremely sensitive to small changes in the initial or boundary conditions, which the 

experimenter cannot control to infinite precision. Hence, it would be necessary to 

repeat many times the same experiment — trying to maintain the same boundary and 

initial conditions — in order to collect as much information as possible. This type of 

problem is ideally suited to statistical methods [10]. An important step here must be 

considered, despite a lot of times that is implied. The statistical approach is usually 

based on averaged variables — above all, the velocity field — but the average operation 

is, by definition, expressed in terms of statistical ensemble, i.e. the mean value of a 

general variable can be obtained repeating the same experiment, with the same 

conditions,   times,    . In practice, the measured averages are temporal averages 

so, in order to overcome the impossibility to repeat the same experiment a large 

number (at limit infinite) of times, it is used the ergodic hypothesis. According to this 

hypothesis, the average of a variable over time and the average over the statistical 

ensemble are the same, so it is possible to carry out an experiment once but for a long 

time (at limit infinite). For example, the hypothesis says that to throw one billion dice 

is statistically nearly the same that to throw only one dice one billion times. Usually, it 

is not easy to demonstrate the ergodic hypothesis so it is often assumed a priori. 

Furthermore, practically, the temporal averages can be made only in a finite interval of 

time, while by definition those have to be done in the time interval         . A good 

approximation is obtained using a time interval greater than the order of magnitude of 

the characteristic time (Eddy Turnover Time) of turbulent structures considered.  

From a historical point of view, the first statistical method to analyze turbulent 

flows was proposed in 1894 by Osborne Reynolds who assumed that turbulent flows 

can be described by ensemble averages, without considering the details of each flow 

realization [11]. He then decomposed the velocity field    into a mean contribution      

plus fluctuations    and rewrote the Navier–Stokes equations to predict the evolution 

of mean velocity, obtaining the so called Reynolds-Averaged-Navier-Stokes equations 

(RANS). However, to solve the Reynolds equations one should compute the second 

order moment of the velocity fluctuations, called the Reynolds stress tensor, which in 

fact depends on the third order moment which depends on the fourth order moment, 

and so on ad infinitum. This is the closure problem: there are more unknowns than 

equations and to solve the hierarchy of Reynolds equations the traditional strategy is 

to introduce another equation, or system of Reynolds equations, chosen from some a 

priori phenomenological hypotheses, to close the set of equations [11]. Several models 

have been developed to determine the Reynolds stresses in RANS (solved for the mean 
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velocity field) either via the turbulent viscosity hypothesis or more directly from 

modeled Reynolds-stress transport equations. Focusing on the former, the models 

based on that hypothesis are relatively simple but they show several limitations that 

should always be kept in mind. The turbulent viscosity hypothesis (introduced by 

Boussinesq in 1877) is mathematically analogous to the stress-rate-of-strain relation 

for a Newtonian fluid and is based on the analogy with molecular diffusion, which 

smoothes velocity gradients for scales smaller than the molecular mean free path [11]. 

According to the hypothesis, the deviatoric Reynolds stress       is proportional to the 

mean rate of strain       through a positive scalar coefficient    called turbulent 

viscosity (or eddy viscosity) [7] 

                
 

 
          

     

   
 

     

   
              (1.1) 

 

where          is the Reynolds stress tensor with density  , 
 

 
      is its isotropic part, 

  
 

 
      is the turbulent kinetic energy and     is the Kronecker delta. The average 

operation is indicated with the notation      . Given the turbulent viscosity field         , 
the Reynolds stress term assumes the advantage of having the same form as the NS 
equations; however, for many flows the accuracy of the hypothesis is poor. The most 
important and common turbulent models are grouped, as follows, in order of 
increasing complexity [I]: 

 

Fig. 1.3-2: Turbulent models review. 

First Order Models 
• Algebraic (Zero Equations) Models: 

• Uniform Turbulent Viscosity; 

• Mixing-Length. 

• One Equation Models: 

• Prandtl's K-equation model; 

• Spalart-Allmaras model, 

• Detached Eddy Simulation (DES). 

• Two Equation Models: 

• K-ε model; 

• K-ω model. 

Second Order Models 

• Algebraic Stress Models (ASM) 

• Reynolds Stress Models (RSM) 

• Nonlinear Eddy Viscosity Models 

Probability-Density-Function of Velocity Methods (PDF) 
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First order models are based on the analogy between laminar and turbulent flows. 

They are also called Eddy Viscosity Models (EVM), as shown in the Boussinesq model. 

For instance, to close the Reynolds equations, Prandtl introduced a characteristic scale 

for the velocity fluctuations, called mixing length, which led him to rewrite the 

Reynolds stress tensor as a turbulent diffusion term. Following the hypothesis 

proposed by Boussinesq, Prandtl assumed that there exists a turbulent diffusion which 

regularizes the mean velocity gradients, for scales smaller than the mixing length [11]. 

Unfortunately this hypothesis is wrong because, contrary to molecular diffusion — 

which is decoupled from the large scale motions and can then be modeled by a linear 

operator (Laplacian), with an appropriate transport coefficient (viscosity) — turbulent 

motions interact nonlinearly at all scales and there is no spectral gap to decouple large 

scale motions from small scale motions. This is a major obstacle faced by all 

turbulence models and the closure problem remains still open [11].  

The central concept of second order models, instead, is to make direct use of the 

governing equations for the second order moments (Reynolds stresses and turbulent 

fluxes) as an alternative of the questionable Boussinesq hypothesis. The motivation is 

to overcome the limitations of first order models in dealing with the isotropy of 

turbulence and the extra strains. The overshoot of this approach is the large number of 

partial differential equations induced, which involve many unknown or impossible to 

find correlations [I]. 

A fundamental contribute to turbulence was also given by A.N. Kolmogorov, who 

published three papers in 1941 on the statistical theory of fully developed turbulence, 

now referred to as K41 theory. He used spectral analysis to study the way in which NS 

equations in three dimensions distribute energy among the different scales of the flow, 

identified by their respective wave number. The K41 theory is based upon the energy 

cascade concept — introduced by Richardson in 1922 — and the three hypotheses 

stated by Kolmogorov himself. In his work, Richardson supposes that turbulence can 

be considered to be composed of eddies (swirling turbulent structures) of different 

sizes, where the largest are characterized by length-scale comparable with the flow 

macro-scale and can contain also smaller eddies. Furthermore, Richardson stated that 

large eddies are unstable and break up, transferring their energy to smaller eddies at a 

rate which is supposed to be constant, in a cascade-like way, until the local    is small 

enough to make the motion stable and let the molecular viscosity dissipate the kinetic 

energy. Kolmogorov then advanced the following three hypotheses [7]. 

 Local isotropy: at sufficiently high   , the small scale turbulent motions — 

contrarily to large scales — are statistically isotropic.  

 First similarity hypothesis: in every turbulent flow at sufficiently high 

  , the statistics of the small scale motions have a universal form that is 

uniquely determined by viscosity and energy dissipation rate. Just as the 

directional information (i.e. isotropy) of the large scales is lost as the energy 

passes down the cascade, Kolmogorov argued that all information about the 

geometry of large eddies is lost. Hence, the statistics of small scale motions 

are in a sense "universal". So, given the viscosity and the energy dissipation 
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rate there are unique length, velocity and time scales that can be formed; 

these are the Kolmogorov scales. 

 Second similarity hypothesis: in every turbulent flow at sufficiently high 

  , the statistics of the motion of scales   in the range       , where   is 

the Kolmogorov length scale and    the lengthscale of largest eddies, have a 

universal form that is uniquely determined by the energy dissipation rate, 

independently of viscosity. This range of scales is named inertial subrange, 

while the range of smaller scales is the dissipation range (cf. Fig. 1.3-3 and 

Fig. 1.3-4). 

 

Fig. 1.3-3: Eddy sizes (on a logarithmic scale) at very high Re; flow scale  ; lengthscale of largest eddies   ; lengthscale 

    is the demarcation between the anisotropic large eddies (     ) and the isotropic small eddies (     ); 

lengthscale     separates the inertial subrange and the dissipation range;  , Kolmogorov scale [7]. 

 

Fig. 1.3-4: A schematic diagram of the energy cascade at very high Reynolds number [7]. 

It remains to be determined how turbulent kinetic energy is distributed among 

eddies of different sizes. Kolmogorov found that, for statistically homogeneous and 

isotropic turbulent flows, the K41 model predicts that the energy spectrum scales with 

     , where k is the modulus of the wave number, averaged over directions, 

corresponding to the inverse of the scale. For two-dimensional turbulence there is a 

statistical theory similar to Kolmogorov's theory developed by Batchelor and 

Kraichnan [11].  
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1.3.3. Tools for statistical analysis 

In the previous section the importance of a statistical approach for the study of 

turbulent flows is repeatedly highlighted, but without specifying the tools typically 

used. There are many statistical tools that can be used to characterize a random field 

but, often, only few parameters are more meaningful or useful than others. In this 

context, five of the tools used for the analysis of turbulence are briefly introduced. 

 

 Probability Density Function (PDF). 

PDF is a function that describes the relative probability for a random 

variable to assume a given value. The probability of a random variable 

falling within a range of values is given by the integral of the variable's 

PDF over the range considered. It is very useful because fully characterizes 

the random variable; if two or more random variables have the same PDF 

are said to be statistically identical. 

 

 Mean and Higher Order Moments. 

The n-th moment of a real random variable   about a value   is defined as 

              
 

  

          (1.2) 

where   can assume all possible values of   and      is the PDF of  . If 

    and    , one obtains the mean     of the random variable  . If   is 

equal to the mean then    is called central moment. For instance, the 

variance of the variable   is the second order central moment of   — the 

standard deviation is its square-root. 

 

 Structure Functions. 

The second-order velocity structure function is the covariance of the 

difference in velocity between two points distant   , at the time   [7] 

                                                                 (1.3) 

with           the three component of the velocity field  . Supposing that 

the assumptions of Kolmogorov are satisfied (as high Reynolds number 

and homogeneity),     can be rewritten as an isotropic function of    [7] 

                                          
    

  
    (1.4) 

where the scalar functions     and     are called, respectively, the 

longitudinal and transverse structure functions.  
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If the coordinate system is chosen so that       , i.e.    is in the   direction 

then  

                                     

Furthermore, as a consequence of homogeneity and isotropy, from the 

continuity equation it follows that  

                    
 

 
 
         

  
    (1.5) 

Thus, in locally isotropic, homogeneous turbulence,           is determined 

by the single scalar function         . 

This tool was used by Kolmogorov in his theory and is very useful to verify 

the three hypotheses and to compare them with experimental data. 

 

 Correlation Functions. 

Generally, correlation functions between random variables are statistical 

indicators of dependencies as a function of distance in time or space. 

When one considers the correlation function between random variables 

representing the same quantity, then this quantity is often referred to as 

autocorrelation function; instead, when one considers correlation 

functions of different random variables then these are sometimes called 

cross-correlation functions to emphasize that different variables are being 

considered. A measure of the linear correlation between two variables   

and   is the Pearson product-moment correlation coefficient or simply 

correlation coefficient [II] 

        
        

    
           (1.6) 

where          is the covariance of the two variables  ,   (a measure of 

how much   and   change together), while   is the standard deviation.  

If      the variables are totally linearly correlated (or anti-correlated) 

while if     they are uncorrelated. For samples       with             

scalar observations and with mean  , the Pearson coefficient is 

        
 

   
  

     
          

  
 

 

   

 
     
          

  
     (1.7) 
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Fig. 1.3-5: Several sets of (x, y) points, with the correlation coefficient for each set. The correlation 

reflects the non-linearity and direction of a linear relationship (top row), but not the slope of that 

relationship (middle), nor many aspects of nonlinear relationships (bottom). 

The correlation coefficient matrix of two random variables is the matrix of 

correlation coefficients for each pairwise variable combination, 

         
            

            
   

       

       
     (1.8) 

which is symmetrical, being                 and              . 

For correlations of     samples,             , each with   scalar 

observations, the     matrix of correlation coefficients   with entries 

    becomes 

      
 

                 
            

      
      

  (1.9) 

As instance, for a statistically stationary process arising in turbulent flows, 

using the velocity fluctuations              , the autocorrelation 

function between the process at time   and       is 

      
            

       
     

and one expects that to diminish as the lag time   increases. In this 

manner, the integral timescale of the process can be defined as [7] 
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The same procedure could be carried out for one-time, spatial correlation 

which is often referred as two-point correlation [7] 

                                   (1.10) 

Just as with the structure function    , as a consequence of isotropy,     

can be re-expressed in terms of two scalar functions        and 

       called respectively longitudinal and transversal autocorrelation 

functions 

                                        
    

  
     (1.11) 

where                       . The two autocorrelation functions        

and        are related as the two structure function are related in the Eq. 

(1.5). Then, generally speaking, just as the integral timescale   , an integral 

lengthscale can be defined as 

      
             

 

 

        
    (1.12) 

Since there are nine different     and three different directions, twenty-

seven integral lengthscale can be defined. However, taking into account 

the isotropy assumption and the relation between        and       , only 

one lengthscale is obtained, that is 

   
         

 

 

      
    (1.13) 

or, equivalently, considering        in place of       . 

Another important lengthscale in characterization of turbulent flows is the 

so called Taylor microscale [7] 

         
 

 

   

   
      

 
 
 

    (1.14) 

and it can be seen as the characteristic dimension of the smallest 

dynamically significant eddies of the flow. 
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 Spectral Analysis - Fourier Transform. 

Another important tool is the spectral analysis, a technique of 

decomposing into simpler parts a complex signal through a sum (or 

integral) of many individual frequency components. A useful quantity, 

mentioned earlier especially about K41 theory, is the energy spectrum 

function        such that [7] 

        
 

 

   
 

 
       

 

 
             

and it represents the contribution to the turbulent kinetic energy from all 

modes with wavenumber  . 

 

1.4 Closing remarks 

Because of the lack of a general theory, turbulence is primarily an experimental 

problem, i.e. we know much more about it from experience than from theory. A 

continuing challenge to research is to develop methodologies to calculate the flow and 

turbulence properties of practical relevance. There is a broad range of turbulent flow 

problems for which various levels of description and accuracy are required. 

 In general, the turbulence studies touch several natural aspects of physics, 

engineering, chemistry and other disciplines; in this view, a multidisciplinary 

approach suits the purpose of a deeper knowledge of the dynamics of turbulence. The 

present work embraces this idea, suggesting an innovative and strongly 

interdisciplinary technique for the characterization of turbulent flows that could 

overcome the limits or enhance the knowledge of the other methods. 
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Chapter 2:  

The Complex Network Theory 

2.1 An introduction to the complex networks 

Network theory is a part of graph theory, which is the study of graphs —

mathematical structures used to model pairwise relations between entities. A graph 

(or network) is then made up of vertices (or nodes, points), that are connected by 

edges (or arcs, lines). Thanks to their easy nature, graphs are a flexible tool to describe 

a lot of everyday life "systems". Well-known examples are the Internet, highways or 

subway systems (Fig. 2.1-1) and neural networks. However, graphs are used in many 

other applications, such as art and literature (Fig. 2.1-2), music (Fig. 2.1-3), sports 

(Fig. 2.1-4) or biology (Fig. 2.1-5). 

 

Fig. 2.1-1: The latest re-design of the Paris metro map, produced by the design agency bdcconseil in 2003 [III].  
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Fig. 2.1-2: Writing Without Words, by Stephanie Posavec; the image shows an example of visualization of modern 

classic. Each literary component was divided hierarchically into even smaller parts - Part, Chapters, Sections, 

Sentences, and ultimately Words, also divided with different colors [III]. 

 

Fig. 2.1-3: A part of the map of cultural transmission of music across the world and across time, from 1800-2000s, and 

traces the geographic and temporal evolution of Western dance music [III]. 
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Fig. 2.1-4: The network shows the passes from every player to those three team-mates he passes to most frequently 

during FIFA World Cup Germany 2006. Strength of arcs displays the number of passes. Size of nodes displays the 

influence (flow betweenness) of a player [III]. 

 

Fig. 2.1-5: The graph represents a temporal protein interaction network of the yeast mitotic cell cycle. Cell cycle 

proteins that are part of complexes or other physical interactions are shown within the circle. For the dynamic proteins, 

the time of peak expression is shown by the node color; static proteins are represented by white nodes [III]. 
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In this context, a complex network is a graph with non-trivial topological features, 

typically occurring in networks modeled from real systems and involving thousands or 

millions of nodes. The network theory was developed hugely during all 20th century 

both in mathematical areas and in all its application fields. The study of complex 

networks, instead, is a very young area of scientific research, which took hold mainly 

in the last years of 1990s decade. Despite the relatively recent growth of interest in 

network theory, historically, the birth of the graph theory coincides with the solution 

of the so called Seven Bridges of Königsberg problem by Leonhard Euler in 1736 [12], 

which is deservedly referred as one of the father of graph theory.  

 

Fig. 2.1-6: Diagram of Seven Bridges of Königsberg with a graph representation [IV]. 

Focusing on complex network theory, this can be thought as combination of graph 

theory and statistical physics, endowing it with a multidisciplinary nature [13]. First 

developments can be traced back to percolation and random graphs works by Flory [14], 

Rapoport [15]-[17], and Erdős and Rényi [18]-[20]; however, the main reason for recent 

increase of interest in complex networks was the discovery that real networks have 

characteristics different from uniform random graphs. Networks derived from real 

data, indeed, may involve community structures, power-law degree distributions, 

hubs and other particular structural features [13]. Three particular developments have 

contributed to the onset of  interest on complex networks [13]: Watts and Strogatz's 

investigation of small-world networks [21], Barabási and Albert's characterization of 

scale-free models [22] and Girvan and Newman's identification of the community 

structures [23]. These developments have been certainly supported by the increased 

computing powers and by the possibility to study the properties of a plenty of large 

databases of real networks [12]. 

2.1.1. Brief outline of applications 

Graph theory was applied to several areas such as geometry and mathematics, 

theoretical computer science, game theory and city planning; many of these are 

optimization problems — which graph theory successfully resolved — such as [12] "what 

is the maximum flow per unit time from source to sink in a network of pipes", "how to 

color the regions of a map using the minimum number of colors so that neighboring 

regions receive different colors" — leading to the so called four color theorem — or 

"how to fill n jobs by n people with maximum total utility". Complex network theory, 

instead, has taken place in more practical areas such as sociology, 

telecommunications, biology, medicine (e.g. neural networks, genetic, cancer 

metastasis [24]), physics and more recently on engineering [25],[26], economy and earth 



New insights into spatial characterization of turbulent flows: a complex network-based analysis 

 
22 

 

science (e.g. climate [27] and earthquake occurrence [28]). Other examples of network 

theory applications include transportation networks, phone call networks, the Internet 

and the World Wide Web, the actors' collaboration network in movie databases, 

scientific co-authorship[12]. Such a wide range of applications is favorite by statistical 

mechanics elements mixed with graph theory, conferring to complex network theory 

more flexibility and reliability in representing virtually real complex systems.  

2.2 Complex network structure: 

classification and measurements 

Recently, particular attention has been focused on the relationship between the 

structure and dynamics of complex networks, while relatively little attention has been 

given to the subject of network measurements. However, it is only by obtaining 

informative quantitative features of the networks topology that they can be 

characterized and analyzed. Therefore, network measurements are essential resources 

in many network investigations, from representation and characterization to 

classification and modeling [13]. However, both the classification and characterization 

of analyzable structures (natural or human-made) using complex network theory do 

not provide a rigorous procedure to choose the most appropriate measurements. The 

choice, hence, should reflect the specific interests and applications, often implying 

redundancy in evaluation of topological features.  

2.2.1. Main definitions and notations 

In general, there are four main types of complex networks (Fig. 2.2-1): weighted 

digraphs (directed graphs), unweighted digraphs, weighted undirected graphs (or 

simply weighted graph) and unweighted graphs. Starting from the concept of 

weighted digraph, all the other three types can be derived, applying the threshold and 

symmetry operations. 

 

Fig. 2.2-1: The four main types of complex networks and their transformations [13]. 
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A weighted directed graph,             , is defined by a set   of   vertices (or 

nodes) and a set   of   edges (or links). Each vertex can be identified by an integer 

value             while each edge can be identified by a pair       and by a scalar 

      , that respectively represents a connection going from vertex   to vertex   — the 

link is said to be incident in nodes   and   — and its weight. Usually it is assumed that 

there are no self-connections (or loops) and multiple connections, i.e. each vertex has 

not a link with itself and each pair of nodes have no more than one link. Graphs with 

loops or duplicate connections are sometimes called multigraphs or degenerate 

graphs [13]; in the following it will be analyzed only non-degenerate graphs. In matrix 

notation, a weighted digraph can be completely represented by its weight matrix  , 

where each entries           . 

Unweighted digraphs are directed graphs without a particular weight mapping and, 

in this case, usually, all set of links have               . Undirected graphs — both 

weighted and unweighted — instead, are graphs in which edges have no direction, i.e. 

the same connection exists from   to   and from   to  .  

 

Fig. 2.2-2: Graphical representation of an undirected (a), a directed (b), and a weighted undirected (c) graph. In the 

weighted graph, the weights of the links are graphically represented by the link thicknesses [12]. 

The threshold operation permits to obtain from weighted graphs (directed or not) 

their unweighted counterpart. In particular, said   the threshold value, the operation 

of threshold is applied to the matrix  , yielding the matrix   in which the entries  

     
               

                  
  

The square matrix   is said adjacency (or connectivity) matrix. Moreover, a 

weighted digraph can be transformed into its undirected counterpart by applying the 

symmetry operation     , where    is the transpose of   [13]. 

For undirected graphs, two vertices   and   are said to be adjacent or neighbors if 

     ; for digraphs, instead, if       then node i is said a predecessor of   and node 

  is said a successor of  . The neighborhood of a vertex  , represented as     , 

corresponds to the set of vertices adjacent to  , or in other words, the set of all nodes 

with which vertex   has a link. In many cases it is useful to consider only a part of the 

whole graph, in order to analyze local properties. A subgraph                   of 

             is a graph such      and      [12]. 
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Another important concept is the one of reachability of two different nodes. In fact, 

in a general case, two nodes in a graph are not adjacent but they can be connected 

through a sequence of   edges which form a walk. Two vertices are said connected if 

there is at least one walk connecting them, otherwise they are said unconnected. If all 

pairs of vertices are connected, then also the graph is said connected; instead, if there 

is at least a pair of nodes unconnected, then the graph is said unconnected. 

Furthermore, a trail is a walk in which no edge is repeated, while a path is a walk in 

which no node is visited more than once [12]. Generally, two nodes could be connected 

by more than one path; however, the path of minimum length, called shortest-path, 

plays a key role in several analysis, especially in those where information transferring 

is relevant. With the notation        is denoted the topological distance between node 

  and  , i.e. the length of the shortest-path connecting vertices   and  . Finally, a cycle, 

   of length   is defined as a closed walk in which no edge is repeated (e.g.    is a 

triangle,    is a quadrilater and so on).  

2.2.2. Centrality metrics 

Indicators of centrality identify the most important vertices within a graph, 

providing, therefore, a ranking of the most important vertices in the network. 

Rankings based on centrality, however, have some limitations, such as "how to choose 

the best metric" or "how to quantify the difference in importance between different 

levels of the ranking". In the former, usually, the choice is not univocal but is 

dependent on the application and the network topology [29]. The latter, instead, is more 

subtle and it can be mitigated by applying Freeman centralization [30]. Moreover, the 

features which (correctly) identify the most important nodes in a network may be 

meaningless for the remaining vertices of the network. This behavior is a consequence 

of the heterogeneous topology of some complex networks and it explains why, as 

instance, only the first few results of a Google-image-search appear in a reasonable 

order. Therefore, Freeman centralization based on a specific centrality metric can 

provide some insight to the relative importance of nodes in a network. 

A list of the common centrality indicators is reported below. 

 

 Degree Centrality,  . 

The degree (or connectivity)    of a node   is the number of edges 

connected to that node, i.e. the cardinality of the neighborhood      of  . 
This is a simple local measure, since is based on the notion of 

neighborhood, following the idea that an important node is involved in 

large number of interactions [V]. 

For directed networks there are two kinds of degree: the out-degree,   
   , 

equals to the cardinality of the set of successors of  , and the in-degree, 

  
  , equals to the cardinality of the set of predecessors of  , 
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    (2.1) 

Hence, the total degree is      
      

  . For undirected networks 

  
      

      (despite the use of the same notation, in this case    is 

equal to half of total degree of directed networks). The previous definitions 

can be also normalized, taking into account the size of the network, 

dividing by the total number of possible neighbors      , 

    
 

   
    

 

    (2.2) 

In the following, except when explicitly specified, the normalized version 

of the degree centrality will be adopted, which permits a comparison 

between network of different size. 

The average degree is the average of    for all vertices in the network 

                  
 

 
    

 

     

    (2.3) 

The highest-degree nodes are often called "hubs". Information on how the 

degree is distributed among the nodes of a network can be obtained 

calculating its degree distribution,     , defined as the probability that a 

node (chosen uniformly at random) has degree  , or equivalently, the 

fraction of vertices in a network with degree  . For digraphs, the two 

distributions        and         can be considered. Moreover, sometimes 

it can be advisable to calculate the cumulative degree distribution        , 

defined as [12] 

               
 

    
    (2.4) 

 Closeness Centrality,   . 

The closeness of a node is an index based on the distance of that node 

from all others, following the idea that an important node is typically 

“close” to, and can communicate quickly with, the other nodes in the 

network [V]. Despite several closeness-based metrics have been developed, 

some of these are commonly used. The closeness centrality can be defined 

as the reciprocal of the total distance from a vertex   to all other vertices 

    [31] 
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    (2.5) 

or as the mean of shortest paths lengths from a node to others, which is 

the normalized version of the (2.5). These definitions works well for 

connected graphs; in disconnected graphs there exists at least one pair of 

vertices with distance    , i.e. they are not connected. Therefore, for 

these cases it is preferred to use the harmonic centrality of a node  , 

defined as [32] 

      
 

      
     

    

with the convention      . Unlike degree centrality, this is a global 

metric, since the computation involves all nodes in the network. So, 

vertices with a smaller total distance are more central and thus they are 

considered more important.  

 

 Betweenness Centrality,   . 

In networks — assuming that interactions follow the shortest paths 

between nodes pairs — it is possible to quantify the importance of a vertex 

or a edge in terms of its betweenness centrality [33], that is the number of 

paths in which a vertex or edge participates. The idea is that an important 

node/link will lie on a high proportion of paths between other nodes in 

the network [V]. Vertex betweenness centrality can be quantified as 

        
      

   
       

    (2.6) 

where     is the total number of shortest paths from node   to node  , 

while        is the number of those paths that pass through node  . High 

values of    suggest that a node can reach other nodes on relatively short 

paths, or that a vertex lies on a significant fraction of shortest paths 

connecting pairs of other vertices [29].  

The definition (2.6) can be normalized taking into account the total 

number of pairs of vertices not including  , that is            for 

digraphs and              for undirected ones.  

A related concept is random-walk betweenness centrality [34], which takes 

into account that the shortest paths might not be known or not be 

relevant. This metric, hence, considers random walks connecting all 

couples of nodes instead of the shortest paths. 
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Besides, calculating both closeness and betweenness centralities generally 

require large computational time for large networks (i.e. with a huge 

number of nodes/links), because of the expensive calculation of all the 

shortest paths in the graph. Betweenness centrality, indeed, typically 

requires a computational cost of the order       with the Floyd–Warshall 

algorithm [29]. However, faster and ad hoc algorithms have been developed 

in order to decrease the computational costs. As instance, to take 

advantage of the sparse nature of typical real-world graphs [13], the 

algorithms developed by Brande compute    for all vertices in the graph 

with the order                for weighted graphs, and       for 

unweighted graphs , where   is the total number of links. Finally, Bader 

and Madduri [29] proposed a parallel computing of centrality metrics that 

further reduce the computational cost in large, real networks. 

 

 Eigenvector Centrality. 

A more sophisticated version of the degree centrality is the so-called 

eigenvector centrality. This metric is based on an authority classification, 

where an important node is connected to important neighbors [V]. In 

general, connections to vertices which are themselves influential will lend 

a node more influence than connections to less influential nodes. Denoting 

the centrality of a vertex   by   , this effect can be quantified as [35] 

    
 

 
      

 

   

    (2.7) 

where   is a constant. Defining as                 the vector of 

centralities, the equation (2.7) can be re-written in matrix form  

            

showing that    is an eigenvector of the adjacency matrix  , with 

eigenvalue  . In general, there will be many   for which an eigenvector 

exists. However, hypothesizing that              , it can be shown 

(using the Perron–Frobenius theorem) that   must be the largest 

eigenvalue of   and    the corresponding eigenvector [35]. 

 

 Freeman Centralization. 

As just said, the centralization of any network is a measure of how central 

its most central node is, in relation to how central all the other nodes are 
[30]. Centralization indices depend on the centrality metric chosen, but, in 

general, they should have certain features in common: (i) they should 

index the degree to which the centrality of the most central point exceeds 

the centrality of all other points, and (ii) they should each be expressed as 
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a ratio of that excess to its maximum possible value for a graph containing 

the observed number of points. An acceptable index is [30] 

    
                

 
   

                   
 
   

    (2.8) 

where        is a centrality metric for a node   of the network,        is the 

largest value of        and the denominator is the maximum possible sum 

of differences in point centrality for a graph of   nodes. Being expressed 

as a ratio of values to their maximum,       , where      if and 

only if all        are equal, and      if and only if one point, i.e.   , 

completely dominates the network with respect to centrality. 

Using as centrality metric the degree  , its centralization index is [30] 

    
          

 
   

             
 
   

    (2.9) 

where the denominator is equal to            if   is not normalized — 

this expression is obtained if the graph as star or a wheel —, while it is 

equal to       if the degree is calculated with the Eq.(2.2).  

2.2.3. Degree correlation indices 

It is often useful to verify — especially for real networks — whether different vertices 

shows correlation between one of their metrics. The most natural approach is to 

consider the correlations between two connected nodes in terms of degree centrality. 

Degree correlations can be used to characterize networks and to validate the ability of 

network models to represent real network topologies. In addition, the degree 

correlations have strong influence on dynamic processes like instability and they are 

related to the network evolution process, therefore, should be taken into account in the 

development of new models [13]. In the following, five main correlation indices are 

briefly described; in general, however, a network is said to be assortative or 

disassortative if its vertices show a preference to attach to others vertices that are 

similar or different in some way. If there is no correlation, the network is said 

uncorrelated or non-assortative [12],[13],[36].  

 Joint Degree Distribution,        . 

The joint degree distribution (JDD) is the probability that an arbitrary 

edge of the network connects a vertex of degree   to a vertex of degree    
[13]. It can be quantified as a square matrix        ; if many nodes of 

similar degree are linked, then   will have large entries along and near its 

diagonal, while, if many node of dissimilar degree are linked, then   will 

have large entries far from the diagonal.  
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 Conditional Probability,        . 

The conditional probability is defined as the probability that a link is 

incident to a pair of nodes of degrees   and    [13] 

         
          

      
    (2.10) 

That satisfies the normalization              and the degree detailed 

balance condition                                   [12],[13]. While the 

degree distribution      completely determines the statistical properties 

of uncorrelated networks, for correlated ones (such as a large part of real 

networks) it is necessary to use the conditional probability. 

 

 k-nearest Neighbors,    . 

Because of finite size   of networks, the evaluation of the JDD and 

conditional probability in practice is difficult, providing extremely noisy 

results especially for fat-tailed distribution. This problem can be 

addressed by computing the average degree of the nearest neighbors of 

vertices with degree  , [12],[13] 

 

                  

  

   

      
 

  
   

    

   
 (2.11) 

with    the set of first neighbors of vertex  . If there are no correlations 

then        is independent of  , resulting             ; conversely, 

correlated networks are said assortative (disassortative) if        is an 

increasing (decreasing) function ok   [12],[36]. 

 

 Pearson Degree Correlation Coefficient,  . 

Another way to quantify the correlation in assortative networks is the 

Pearson degree correlation coefficient applied to each pair of linked nodes. 

Similarly to definition in Eq.(1.6), the result lies in the range        , 
where negative values indicate that vertices of dissimilar degree tend to be 

linked, while positive values indicate that vertices of similar degree tend to 

be linked. More details regarding quantitative expressions are well 

explained in [12],[13] and [36]. 
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 Rich-Club Metric,  . 

Degree correlation, especially Pearson correlation, is often incorrectly 

interpreted to be an indicator of the tendency of high degree vertices to 

link to each other, whereas it is an indicator of the tendency of similar 

degree nodes to link to each other (Fig. 2.2-3). For instance, in science, 

influential researchers of some areas tend to form collaborative groups 

and publish papers together [13]. This phenomenon is known as Rich-club 

and it can be measured by the Rich-club coefficient      of degree  , 

defined as [37] 

      
   

            
    (2.12) 

where     and     are respectively the number of edges between vertices 

of degree greater than or equal to  , and the number of those vertices. 

When        for        then it is interpreted that high degree nodes 

of the network are well connected.  

A high Rich-club coefficient implies that the hubs are well connected, and 

global connectivity is resilient to any one hub being removed. However, 

one must notice that vertices with higher degree will be naturally more 

likely to be more densely connected than vertices with smaller degree 

simply due to the fact that they have more incident edges [38]. In these 

situations it can be useful to evaluate a normalized version of     , 

dividing by the Rich-club coefficient of an equivalent random network 

with the same degree distribution     . 

 

Fig. 2.2-3: An example of disassortative network that shows the Rich-club effect (nodes 6, 7 and 8). 
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2.2.4. Other measurements 

Although centrality metrics play a fundamental role in the characterization of a 

large number of complex networks — especially the degree and the betweenness 

centralities — several other parameters are important and meaningful in network 

analyses. These measurements arise from the necessity to investigate network 

properties regarding the relative distance between vertices or the tendency to form 

sets of tightly connected vertices (clusters or communities). 

 Clustering Coefficient,  . 

One way to characterize the presence of triangles (defined as loops of 

order three or sets of three vertices with edges between each pair of 

vertices) in a network is through the clustering coefficient, also known as 

transitivity [12],[13]. In other words, the clustering coefficient gives the 

probability that two randomly chosen neighbors of a node   are also 

neighbors. It can be defined a local and a global clustering coefficient. The 

local clustering coefficient is [27] 

    
     

          
    (2.13) 

that is the fraction of links between the vertices       within the 

neighborhood    of   to the total number of possible links in   .  

A first global clustering coefficient is then 

   
 

 
   

 

   

    (2.14) 

By definition,        and      ; however, if     ,     , then 

some tools force that if     ,     , other instead             . In 

this work the former choice is adopted.  

A second definition for the global clustering coefficient is said transitivity 

and it is calculated for undirected, unweighted networks as [13] 

   
   

  
    (2.15) 

where    is the number of triangles in the network and    is the number 

of connected triples. The factor three accounts for the fact that each 

triangle can be seen as consisting of three different connected triples, 

giving, also in this definition,      . A connected triple is a set of three 

vertices where each vertex can be reached from each other (directly or 

indirectly) [13].  
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Values calculated with the two definitions of   are different because the 

"average" in Eq. (2.15) gives the same weight to each triangle while Eq. 

(2.14) gives the same weight to each vertex, resulting in different values 

because vertices of higher degree are possibly involved in a larger number 

of triangles than vertices of smaller degree [13]. 

 

 Average Physical Distance,  . 

The average physical distance of a node is here introduced and defined as 

    
 

       
       

      

    (2.16) 

where        is the physical distance between node   and another node   of 

its neighborhood, and    is the normalized degree centrality of   in 

Eq.(2.2). Since in this work all the networks are spatial networks (cf. 

section 2.3), then an alternative to the average topological distance — 

that is proportional to the inverse of the closeness centrality, Eq. (2.5) — is 

introduced. The calculation of   , then, let to avoid the high computational 

cost due to the calculation of all shortest-path lengths (such as in the 

betweenness and closeness centralities). The mean value of    is obtained 

averaging on all nodes   as 

    
    

 
    

Later,   can be a very useful parameter to characterize the average size of 

the neighborhood of vertices. 

 

 Edge Density,  . 

The edge density is defined here as 

   
              

                      
    (2.17) 

and it will be used to characterize the overall dimensions of the networks. 

 

 Modularity,  . 

Many real networks show the presence of groups whose vertices are more 

densely interconnected to one another than with the rest of the network. 

These groups are commonly referred as communities and their 

identification in large networks is useful because vertices belonging to the 

same community are more likely to share properties and dynamics [13]. 

Despite the importance of the concept of community, there is no 
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consensus about its definition. Communities are defined in a strong sense, 

i.e. if all vertices of a subgraph have more connections between them than 

with the rest of the network, and in a weak sense if the sum of all vertex 

degrees inside the subgraph is larger than outside it [13]. Newman and 

Girvan [39] proposed a measurement, called modularity,  , to quantify the 

division of networks. Modularity is the fraction of the edges that fall 

within the given groups minus the expected such fraction if edges were 

distributed at random. If a network is split in   communities then a 

symmetric     matrix,  , can be defined where its elements along the 

main diagonal     give the fraction of connections between vertices in the 

same community   while the other elements,           identify the 

fraction of connections between vertices in the different communities   

and   [13]. Therefore, if the network is split into two communities,    , 

and   can be calculated as [13] 

  
 

  
      

    

  
 

  

                   (2.18) 

where       is the trace of matrix  ,         according to the nodes   and 

  belongs to community 1 or 2 (of course the indices            ). If a 

particular division gives no more within-community edges than would be 

expected by random chance we will get     . Values other than zero 

indicate deviations from randomness, and in practice values greater than 

about       appear to indicate significant community structure [40]. 

Furthermore, there exist several methods to find community structures in 

networks such as spectral methods, agglomerative and divisive methods or 

a method — proposed by Newman — based on maximization of the 

modularity. Optimizing   theoretically results in the best possible 

partition of a given network; however, going through all possible iterations 

of the nodes into groups is impractical (graph partition problems fall 

under the category of NP-hard problems) so heuristic algorithms are used. 

An example of heuristic method based on modularity maximization to find 

communities is the Louvain method [41] that appears to run with a 

computational cost          . Recently, Newman [42] proposed a method 

which reformulates the modularity concept in terms of the eigenvectors of 

the so called modularity matrix 

        
    

  
    

Thus, Newman proposed a new definition of communities as indivisible 

sub-graphs, i.e. sub-graphs whose division would not increase the 

modularity. Currently, this method is believed to be one of the most 

precise, as it is able to find a division with the highest value of modularity 

for many networks [13]. 
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2.3 Real and spatial networks 

As said before, many systems in nature and in technology can be approximated as a 

complex network, since they present a large number of highly interconnected 

elements. Naturally, an approximation cannot provide every details of the real system 

modeled. Nevertheless, in many cases of practical interest, such an approximation 

provides a simple but still very informative representation of the entire system. In last 

decades, analyzing many topological features of a lot of real networks, it was found out 

that, despite the intrinsic differences, most of the real networks are characterized by 

the same topological properties, such as relatively small characteristic path lengths, 

high clustering coefficients, fat-tailed shapes in the degree distributions, degree 

correlations, and the presence of community structures [12],[13]. For instance, high 

clustering coefficients and power-law degree distributions are ubiquitous in most real 

networks [12],[13]. 

In regular hyper-cubic lattices in   dimensions, the mean number of vertices one 

has to pass by in order to reach an arbitrarily chosen node grows with the lattice size 

as     . Conversely, in most of the real networks, despite of their often large size, 

there is a relatively short path between any two nodes. This feature is known as the 

small-world property and is characterized by a small average-shortest-path length [12]. 

This property has been observed in a variety of real networks, including biological and 

technological ones. Differently from random graphs, the small-world property in real 

networks is often associated with the presence of clustering, denoted by high values of 

the clustering coefficient [12]. Watts and Strogatz [21], have proposed to define small-

world networks as those networks having both a small value of average-shortest-path 

length, like random graphs (as instance, Erdős-Rényi random networks [18]-[20]), and a 

high clustering coefficient, like regular lattices [12],[13]. Additionally, it was found that 

most of the real networks — unlike regular lattices or random graphs — display power-

law shaped degree distributions           , with      . Such networks have been 

named scale-free networks, because power-laws have the property of having the same 

functional form at all scales [12]; of course, this does not necessarily implies that such 

graphs are scale-free with respect to other measurable structural properties. In finite-

size networks, fat-tailed degree distributions have natural cut-offs. When analyzing 

real networks, it may happen that the data have a rather strong intrinsic noise due to 

the finiteness of the sampling. Therefore, in these cases, to smooth the statistical 

fluctuations present in the tails of the distribution, it is sometimes suitable to use the 

cumulative degree distribution — cf. Eq.(2.4). 

A particular class of networks is that of spatial networks, i.e. networks whose nodes 

occupy a precise position in Euclidean, real space (two or three-dimensional), and 

whose edges are real physical connections. There are a lot of examples of spatial 

networks in many areas, such as in neural networks, information/communication 

networks, electric power grids, transportation systems, nature and engineering 

applications networks [12],[25]-[28]. It is not surprising that the topology of spatial 

networks is constrained by their geographical embedding [12]. Some "conditioned" 

topological characteristics of such networks regard, for instance, the node degree, 
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since the number of edges that can be connected to a single node is limited by the 

physical space to connect them. The fact that long-range connections are constrained 

by the Euclidean distance has also important consequences on the small-world 

behavior. 

Csányi and Szendrői [43] have worked out an alternative definition to characterize 

the small-world behavior, proving that networks with strong geographical constraints 

are not small worlds, suggesting an indication of the small-world scaling as an 

exponential relation between the number of nodes that can be reached from vertex   in 

at most   steps, and the steps   (instead of the average shortest path, which scales 

logarithmically with the network size  ) [12]. Besides, many spatial networks show 

trivial clustering-degree correlations; many other real networks, however, show a 

hierarchical behavior where           . In networks with strong geographical 

constraints, hierarchy is absent because of the limitations imposed by the topology [12]. 

2.4 Large graph visualization and analysis tools 

A large graph (equivalently a network) is typically classified as large if it is made up 

of a great number of nodes (usually      ) and links (usually      ). Since a lot 

of real complex networks are large graphs (such as in sociology, biology, and computer 

science [44]), it is crucial to have tools able to handle easily these networks, both in 

visualization and analysis. Some tools are free to download while other tools have 

appeared in research papers but are not available for public use. In general, there are 

few software suitable for all the aspects required by network analyses coming from 

different research areas; conversely, most of tools are ad-hoc software for specific 

areas. Some of these tools are: igraph, Gephi, Cytoscape, Tulip, WiGis, CGV, VisANT, 

Pajek, In Situ Framework, Honeycomb, UCINET, Graphviz, InfiniteGraph, R, 

Mathematica, Matlab. In this work were used mainly Matlab, Tulip, Pajek and VisIt, 

where the last one is an open source tool for visualizing and analyzing different types 

and very large data [VI]; as a check tool in many operations was also used Gephi.  
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Chapter 3:  

Building the Turbulent Network 

In the previous chapters a general overview about turbulence and complex network 

theory was presented, particularly introducing their main properties and 

measurements. In this chapter, instead, the set of hypotheses and procedures 

necessary to build the network, based on a turbulent flow, will be provided. 

In Fig.  3-1 the workflow of the entire work is shown, in order to give a visual, easy 

summary of each stage. 

Selecting the 
Region to Study

Calculating the 
Turbulent Kinetic 

Energy

Calculating the 
Linear Correlation 

Coefficients

Applying 
the 

Hypotheses

Assembling  the 
Adjacency Matrix

(Network)

Collecting the 
Turbulent Flow 

Database

Results Post-Processing

 

Fig.  3-1: Workflow diagram: a flowchart representation. 

In the next sections each block of the workflow will be explained in detail, from the 

collecting of the turbulent flow database to the formation of the adjacency matrix, 

which represents entirely the network, for the established hypotheses. The last two 

blocks, i.e. the post-processing and the comparing of results, instead, will be treated in 

the next chapter. 
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3.1 Turbulence and networks: a novel approach 

As mentioned previously, in Chapter 2, the study of complex networks is a young 

area of scientific research, which took hold mainly in the last two decades. 

Furthermore, complex network theory found a wide range of application to real world 

problems [24]-[28] revealing to be a very powerful tool to analyze the high complexity of 

real world systems.  

In turbulence, instead, few and very recent network-based approaches have been 

proposed. The main works in this research area concern: the study of two-phase flows 
[25],[47]-[50], primarily with the aim to identify flow-patterns, which results an hard task 

due to the complexity of such flows; the study of turbulent jets in order to map 

stochastic processes [51] or discriminating various regions of the jet relative to its axis 
[26]; the study of reacting [52] and fully developed turbulent flows [53],[54]. 

In general four approaches of mapping time series to complex networks have been 

proposed [55]:  

 Visibility graph (also visibility algorithm) [2]; 

 Recurrence networks (also recurrence plots) [3];  

 Phase-space networks [56]; 

 Correlation networks, which uses linear correlation coefficients as the 

criterion to connect nodes [57]. 
 

Most of works concerning turbulence or turbulent flows focuses on the first two 

approaches, i.e. recurrence plots and visibility algorithm, while a minor part uses the 

phase-space networks and the correlation networks.  

This work, instead, is placed in a novel perspective (both for the methodology — by 

using a correlation network —, as well as for the objective and purpose of the study) 

with respect to other works that deal with complex networks in turbulent flow. 
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3.2 Description of the turbulent flow database 

The present work uses the forced isotropic coarse turbulence dataset from Johns 

Hopkins Turbulence Databases (JHTDB), which consists of a DNS of a forced 

isotropic turbulence, with a       periodic spatial grid and      timesteps available 
[45],[VII]. The dataset chosen is part of a bigger database, which includes also a DNS of a 

forced magneto-hydro-dynamic turbulence (MHD), a DNS of a channel flow and a 

DNS of a homogeneous buoyancy driven turbulence, comprising more than 230 

Terabytes of data. A summary of the main characteristics of the turbulent field, with 

the respective formulas, are listed below. 
 
 
 

Domain:       

Grid:       

Viscosity             

Simulation timestep           

Storing time interval                

Stored time             

Table 3.1: Turbulence simulation parameters [VII]. 

Total kinetic energy        
 

 
 

                

Dissipation              

 

             

R.m.s. velocity                 

Taylor microscale                  

Taylor-scale Reynolds              

Kolmogorov timescale                

Kolmogorov lengthscale                     

Integral scale   
 

   
 

    

 
         

Large-eddy turnover-time              

Distance between nodes   
        

      
 

    

      
            

Table 3.2: Statistical characteristics of turbulence (averaged over the stored time             ) [VII]. 

Focusing on the forced isotropic turbulence dataset, energy is injected by keeping 

constant the total energy in modes such that their wave-number magnitude     is less 

or equal to 2. After the simulation has reached a statistical stationary state, 
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     frames of data — which includes the three components of the velocity vector and 

the pressure field— are generated and stored into the online database. The duration of 

the stored data is about one large-eddy turnover time   . The domain of the field is a 

      cube, i.e. a range of  ,   and   coordinate of       , while the simulation time 

interval is             with a timestep          . However, data are stored every 

10 DNS timesteps in the coarse version, obtaining the just mentioned      timesteps 

available. There is another dataset available to download, a finer one made for testing 

purposes, that acquired the data every single time step.  

In Fig. 3.2-1 and Fig. 3.2-2, the radial kinetic energy spectrum of the dataset, the 

total kinetic energy and    , as function of time, are shown; in particular, the scaling 

      Kolmogorov law is well represented for the inertial subrange. This scaling also 

applies for smaller   values (i.e. large scales), because of the forcing that acts on bigger 

scales. The dashed lines represents data before storing the database, that is before 

reaching a statistically stationary state      . 

 

 

Fig. 3.2-1: Radial kinetic energy spectrum, averaged in time t = [0, 2.048] [VII].  



New insights into spatial characterization of turbulent flows: a complex network-based analysis 

 
40 

 

 

 

Fig. 3.2-2: Total kinetic energy (upper panel) and micro-scale Reynolds number (lower panel) as function of time. Data 

corresponding to the database is show using solid line between t=0 and 2.048 [VII]. 
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3.2.1. Collecting the data: Pre-processing 

In this part, the pre-processing operations — summarized in the Fig. 3.2-3 — are 

briefly explained. 

Selecting the 
Region to Study

Calculating the 
Turbulent Kinetic 

Energy

Collecting the 
Turbulent Flow 

Database

 

Fig. 3.2-3: Pre-processing stage of the workflow diagram. 

In particular, in order to acquire the data from the stored database, it was used the 

new Beta version of the Cutout Service provided by the website [VII], in which several 

options are available, such as the authorization token (Fig. 3.2-4), obtained thanks to 

a website operator. From an operative point of view, the user can firstly select a 

dataset from the list; in this case it was selected the Isotropic Coarse dataset. After, it 

can be chosen a data field among velocity, pressure (in format hdf5, .h5 file extension) 

and vorticity fields (in format .vtk). Finally, the cutout can be performed specifying the 

time and space intervals. However, during the downloading process, due to some 

limitation of the database server, it was possible to download cutouts of limited 

dimensions.  

 

Fig. 3.2-4: Screenshot of the new data-cutout service. [VII] 

In this work, two parts of the domain were downloaded and from now these will be 

referred as regions. In detail, the first region — which will be referred as region-1 from 

now — is a cube with 83 nodes for each side and all 1024 times, centered in the node 
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                        , where            are the coordinates expressed in the 

nodes grid reference system. The second region — referred as Region-2 in the 

following — is also a cube (with the same dimensions of the previous one) but it is 

centered in the node                         . Region-1 is the objective of analysis 

of this work, while the region-2 is analyzed as a comparison with region-1. 

 Because of download limitations each file acquired corresponds to one of the 83 Z-

section of the cube, i.e. 83 square grids of         nodes normal to the Z-axis, with 

1024 times for each node. A MatLab script was then created to read the fields 

downloaded and re-assemble them in a                ,   -matrix which 

consists of the velocity or the vorticity vector fields time series. 

It's worth the effort to specify from now that — in order to avoid notation 

confusions — only one reference system it is adopted, that is the global reference 

system with origin in the node                    and that corresponds to the 

physical point                   . The set of all points of the region selected to 

analyze are expressed in node-coordinates, although for practical and computational 

uses they are converted in physical coordinate with the transformation relation 

            
  

    
              (3.1) 

When the temporal series of the three components of the velocity field are stored, 

the turbulent kinetic energy scalar field,  , can be computed for each node identified 

by the set of coordinates         as 

   
 

 
              (3.2) 

 

where     and   are the three components of the vector velocity field           , 

respectively along         axes. Furthermore, the modulus of the vorticity field  

         
    

    
            (3.3) 

 

is stored (provided directly from the on-line database) in order to show the time 

evolution of the regions selected. 
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3.3 Network-building hypotheses 

At this step of the workflow, it is necessary to state the hypotheses that each point of 

the regions considered must fulfill in order to be classified as a node of the network. 

First of all, in order to avoid directional preferences, it was decided to work in 

spherical symmetry. Therefore, for each cubical region selected, an internal sphere is 

obtained; the centers of the two spheres are the same two points indicated previously 

for the cube, i.e.                 and                  respectively, while the 

radii are both chosen equal to         that is about twice the Taylor micro-scale   (cf. 

Table 3.2). Hence, each point inside the sphere of radius    is a potential node of the 

network. The 4-D matrix of the time series of the energy field  , then, is re-shaped 

both in a       matrix and three      coordinates vectors, where    is the number 

of temporal observations (equals to 1024 if all times are considered), while    is the 

total number of points selected inside the sphere of radius   .  

For         it is found          . Each entry of the reshaped matrix 

corresponds to a temporal "measured" value of the energy of a point inside the sphere, 

while the other three vectors gives the        -coordinates of that point (Fig. 3.3-1). 

 

Fig. 3.3-1: Sketch of the matrix with temporal observations of the kinetic energy of the NS nodes and their coordinates,. 

After that, other three hypotheses are stated; specifically, a pair of distinct points 

             are said to be two connected nodes of the network (i.e. they have a direct 

link) if and only if: 

1) at least one between the two nodes lies inside the internal sphere with radius 

          and concentric to the sphere of radius   ; 

2) the physical distance   between the two nodes   and   is        ; 

3) the linear correlation coefficient     between the two nodes, computed for the 

   temporal observations, is        , with   a threshold value included in 

the range        . 
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Since only different nodes are selected (that is    ), the networks obtained will 

have not self-connections. The first two hypotheses are geometrical constraints while 

the third guarantees that the two nodes are sufficiently "linked", i.e. spatially 

correlated, over time. In particular, the hypothesis 1) reduces the region of study to a 

smaller sphere with radius nearly equals to the Taylor micro-scale which, as stated in 

Eq. (1.14), can be seen as the characteristic dimension of the smallest dynamically 

significant eddies of the flow. This choice is due to the fact that it is considered 

relevant what happens at scales of the order of   or smaller, where the spatial 

correlation is high. The smaller sphere, then, can be seen as an influence sphere for the 

center node; however, to extend the possibility that each node inside the internal 

sphere has the same influence sphere, the hypothesis 2) is stated. The Fig. 3.3-2 shows 

a sketch of the boundaries of the regions and summarizes the geometrical restrictions. 

 

Fig. 3.3-2: Graphical representation of the domains (the first cubic, the others spherical) processed and a visual review 

of the possibility to active a link by a pair of nodes, as stated above in the three hypotheses. 

In such a way, every node included in the inner sphere has the same potential 

number of links that are discerned, then, by the absolute value of the correlation 

coefficient        . The selection of the threshold,  , is a non-trivial aspect of building 

the network [46]; indeed, it should be set in order to take into account both to evidence 

strong spatial correlations and to provide a manageable number of nodes. In the 

following, to conclude, a part of the turbulent kinetic energy time history and of the 

modulus of the vorticity field for the region-1 are shown. 



Chapter 3: Building the Turbulent Network 

  

 
 

45 
 

 

 

Fig. 3.3-3: Time evolution of the kinetic energy field in the section Z=512, T=1. Upper panel, section of the outer sphere 

(a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

T = 1 

T = 1 
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Fig. 3.3-4: Time evolution of the kinetic energy field in the section Z=512, T=310. Upper panel, section of the outer 

sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

T = 310 

T = 310 
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Fig. 3.3-5: Time evolution of the kinetic energy field in the section Z=512, T=760. Upper panel, section of the outer 

sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

T = 760 

T = 760 
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Fig. 3.3-6: Time evolution of the kinetic energy field in the section Z=512, T=972. Upper panel, section of the outer 

sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

T = 972 

T = 972 
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Fig. 3.3-7: Time evolution of the modulus of the vorticity field in the section Z=512, T=1. Upper panel, section of the 

outer sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

Contour levels are highlighted with dotted lines. 

T = 1 

T = 1 
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Fig. 3.3-8: Time evolution of the modulus of the vorticity field in the section Z=512, T=310. Upper panel, section of the 

outer sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

Contour levels are highlighted with dotted lines. 

T = 310 

T = 310 
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Fig. 3.3-9: Time evolution of the modulus of the vorticity field in the section Z=512, T=760. Upper panel, section of the 

outer sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

Contour levels are highlighted with dotted lines. 

T = 760 

T = 760 
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Fig. 3.3-10: Time evolution of the modulus of the vorticity field in the section Z=512, T=972. Upper panel, section of the 

outer sphere (a unique scale with the other sections); lower panel, a zoom on the inner sphere (with specific color-scale). 

Contour levels are highlighted with dotted lines. 

T = 972 

T = 972 
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3.4 The correlation and adjacency matrices 

Once the hypotheses are established, the next step is to apply them to the region to 

study. So, this step will provide the set of procedures implemented which lead to the 

construction of the adjacency matrix (Fig. 3.4-1), that, in practice, is the representation 

of the complex network of the turbulent flow considered. 

Calculating the 
Linear Correlation 

Coefficients

Applying 
the 

Hypotheses

Assembling the 
Adjacency Matrix

(Network)

 

Fig. 3.4-1: Operative part of the workflow diagram. 

Among the three main hypotheses stated above, the two geometrical ones are easy 

to apply once the three coordinates vector — called       in Fig. 3.3-1 — are stored. It 

is sufficient, indeed, to verify that the mutual physical distance between two points 

inside the sphere of radius    and the respective physical distances of this pair from the 

center of the spherical region selected are less or equal than          . The third 

assumption, instead, requires a particular attention.  

Despite the correlation coefficients     between two points     can be calculated 

simply applying the Eq. (1.7) — repeating this operation for each pair of points —, 

acquiring and saving all the     can be useful later, in the construction of the adjacency 

matrix and in the post-processing step. Nevertheless, since the total number of points 

inside the sphere of radius         is (as said before)          , the matrix  , 

calculated with the Eq.(1.8) and (1.9), with entries    , will have dimensions       

that is not storable or tractable in practice. Therefore, a few adaptations are necessary: 

 Firstly, by definition, only half matrix have to be stored due to the symmetry 

(i.e.        ). 

 Then, if the threshold   is know a priori and it is large enough (that means, 

indicatively,      ), it can be helpful to apply a filter excluding all the 

      , with    slightly smaller than   (as instance if      , it may be 

      ). 

 Moreover, since the order of magnitude of   is, often, about            , it 

is possible to round the correlation coefficients off to the nearest       

decimal digits. The rounding operation, however, should take into account 

the number of significant digits of  ; as a rule of thumb, it is sufficient to set 

    as the number of significant digits of   plus one. For instance, if 

             . 

Applying these reductions, the memory-costs significantly decrease. However, the 

size of the matrix   is still      , preventing a single-file-saving. In order to 

overcome this obstacle, the correlation coefficients matrix is split in   parts, 

considerably smaller than  , that can be saved individually. For simplicity, the square 
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size    of all parts    are the same. It may happen, though, as in this case, that    is 

not easy to be divided. Indeed, the divisors of                 are   and      , 

which represent different orders of magnitude; since the number of parts (files)   

grows as 

   
        

 
    (3.4) 

 

selecting an    too small (such as  ) the sub-matrices    will have dimensions still too 

big (                 , in this case) but with the advantage of having a small 

number of files   (  in this case). On the other hand, selecting an    too big (such as 

     ) the sub-matrices    will be minimal (   , in this case) but the number of files 

will be enormous (with         ,           ). Moreover, applying this method 

with other values of   , it may happen that    is a prime number. Hence, to attenuate 

all the complications listed above, the square size of   (that is   ) is increased by  -

zeros rows/columns, with     , such that the modified dimensions are 

                          

 

The statement n    is crucial to avoid that the sizes of   grows too much. Every 

single file saved in this way will include the correlation coefficients of the sub-matrix 

   and a       vector with the indices of the first and last rows and columns of    

(Fig. 3.4-2). 

 

Fig. 3.4-2: A sketch example of a partitioning of the correlation coefficients matrix. 

As instance, setting     the ultimate square size of   is               and it 

can be easily split as                so that, setting         and      , it 

will lead to a number of saved files      . This example gives an idea of a trade-off 

between a relatively small value of   (that affects the Hard-Disk storable capacity),    
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(which affects the performances in terms of RAM) and   (that affects the 

manageability of the codes).  

Once that all the correlation coefficients are stored, the three hypotheses stated in 

the previous section can be applied to the set of    points internal to the sphere of 

radius        . So, the adjacency matrix,  , is obtained with entries       if     

and if the pair of nodes fulfill the three hypotheses. According to the definition, hence, 

in the following each network analyzed will be undirected and without self-

connections. The size of   is the same of   (i.e.      ) so it is also partitioned and 

stored in      parts, because it may happen that in some parts    there are no 

correlation coefficients greater than the threshold  . Nevertheless, frequently, the 

adjacency matrix of real networks is sparse [13], that is the number of non-zero entries 

(links) is a considerable small fraction all possible links. This property allows to re-

assemble the    parts in one single sparse-matrix, which have the size       but 

only the non-zero entries are stored. 

 

 

  



New insights into spatial characterization of turbulent flows: a complex network-based analysis 

 
56 

 

 

Chapter 4:  

Results and Network Analyses 

Since the adjacency matrix is assembled, each network built from the turbulent flow 

can be analyzed in its topological and structural properties, as defined in Chapter 3. In 

this chapter, then, a detailed review of the results coming from post-processing step 

will be showed and discussed.  

Assembling  the 
Adjacency Matrix

(Network)
Results Post-Processing

 

Fig.  4-1: Analysis and post-processing stage of the workflow diagram. 

After a brief overview of the general properties of the network, the centrality 

analysis is first carried out, in order to indentify the most important nodes or groups of 

nodes. Based on centrality, the analysis moved on correlation between nodes and their 

tendency to link each other (assortativity). Later, results of other measurements are 

showed, in particular the clustering analysis of the network, provided by clustering 

coefficient, and the grouping in communities, through modularity concept. In the last 

part of the chapter two sensitivity analyses are discussed, considering different 

threshold values   and different temporal windows. Finally, another network, built on 

region-2, is then studied ad compared to the network constructed on region-1. 

4.1 General properties of the network 

First of all, it is reminded that the domain analyzed, called region-1, is composed by 

two concentric spheres, centered in the node                , with radii         

and        . Then, a threshold value       is chosen, representing very high degree 

of energy correlation; this value will be kept unchanged in the following, except in the 

sensitivity analysis. The resulting network is composed by          nodes, 

           links and          nodes inside the inner sphere. It should point out 

that this value is greater than the "ideal" value        
        

  
    

 
      , 

confirming the fullness of the internal sphere (no holes in the inner part of the 
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network); the two values are not the same because of numerical approximations in the 

computing of the distances from the center. The number of links between only internal 

nodes also diminish to            , but the ratios           saying that, 

despite the internal nodes are only about       , excluding the external nodes 

         , the remaining links are about     of the total, confirming that internal 

nodes are strongly linked.  

    

Fig. 4.1-1: Visualizations of nodes of the network; the center C is highlighted in blue. (a) a 3D view; (b) 2D section view 

on the plane Z=512; (c) 2D section view on the plane Y=391; (b) 2D section view on the plane X=391. 

The edge density is evaluated, according to the definition in Eq. (2.17), as 

     
 

      
  

            
 

               

 

where the numerator is the number of active links, while the number of total possible 

links is computed as the total number of links between all   nodes minus the total 

(a) 

(c) (d) 

(b) 
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number of links between only the external links. This definition, however, does not 

take into account the physical distance constraints imposed by the hypotheses. A 

second edge density,        , is then introduced as a normalized, bi-dimensional, 

cumulative density function 

         
      

        
    (4.1) 

 

where          is the physical distance between two nodes,        is the number of 

active links above the threshold   and at a fixed   and          is the total number of 

links that can be activated at the distance  . A graphical representation of         is 

reported in Fig. 4.1-2: high density values are found for small physical distances, 

confirming that at       short-term links are always active              .  

 

Fig. 4.1-2: Combined bidimensional edge density,        . 

In detail,         is defined as cumulative because        is calculated considering 

the number of links above the threshold  ; so, each section at fixed threshold   in Fig. 

4.1-2 represents the distribution of links as a function of the distance   for a 

hypothetical network built with that specified threshold value  . The distribution of 

           is reported in Fig. 4.1-3 as a histogram plot; it is clear the noisy behavior. 

Rather, a decreasing function of   was expected since long-range connections should 

be much less than shorter ones. The explanation of such a tendency is explained if one 

reminds that the domain analyzed is an equally spaced, discrete mesh so each node 

can activate only a limited number of links at a fixed distance (cf. Fig. 4.1-4 as an 

example).  
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Fig. 4.1-3: Histogram plot of the number of active links at physical distance l, for      . 

 

Fig. 4.1-4: Sketch of possible links (in blue) at distance    that can be activated in a uniformly spaced grid (blue nodes). 

Therefore, the number of links that can be activated with nodes at a fixed distance 

depends on the possibility to find nodes on the grid; naturally, as   increases also the 

number of potential links grows. In Fig. 4.1-5 the links distribution of Fig. 4.1-3 is 

displayed after the normalization with the possibility to find a node at a fixed distance. 

In so doing, the new normalized distribution    is quite smooth and, above all, 

decreases for increasing distances. However, the values of    have no practical 

meanings because they represent neither the counted values for each distance (such as 

in Fig. 4.1-3) nor a probability function. The latter can be then evaluated normalizing 

with the number of links which can be activated at a fixed distance without threshold 

restrictions, that is the edge density    (Fig. 4.1-6). Finally, the probability density 

function of the correlation coefficients as function of   is reported in Fig. 4.1-7. 



New insights into spatial characterization of turbulent flows: a complex network-based analysis 

 
60 

 

 

Fig. 4.1-5: Links distribution m(0.9,l) normalized with the possibility to find a node at a physical distance l. 

 

Fig. 4.1-6: The section       of the combined bidimensional edge density,        . 

 

Fig. 4.1-7: The PDF of the correlation coefficients as function of  ; the probability is obtained dividing by 103. 
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4.2 Network centrality examination 

The first centrality index analyzed is the degree centrality,    — Eq. (2.1), (2.2) and 

(2.3) — defined as the number of links incident to a node  , normalized with the total 

number of possible links (i.e.    ) or as the normalized cardinality of the 

neighborhood of node  . The average degree of the network is               .  

The Fig. 4.2-1 shows the degree centrality in a 3D perspective view of the entire 

network. 

 

Fig. 4.2-1:Four 3D views of the degree centrality of the network in a unique scale of values. The white circle indicates 

the edges of external sphere. Nodes above the threshold              are highlighted. 
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In Fig. 4.2-2 is reported the degree centrality map in a 3D perspective view of the 

inner sphere, highlighting the nodes with high    values. From these views, two 

considerations arise: first, the      nodes have low degree centrality values while the 

more central nodes in terms of degree are only in the inner sphere; then, the high-   

nodes tends to "group each other", i.e. they are clearly distinguishable in roughly 

defined clusters inside the sphere of radius   . The former consideration is a 

consequence of the two geometrical hypotheses. Indeed, more importance is given to 

the vertices inside the inner sphere, while the      nodes are considered only to make 

the influence sphere equal for all the    nodes. The latter, instead, is an unexpected 

result if one considers that it is analyzed an isotropic, homogeneous flow field. 

Moreover, Fig. 4.2-3 shows the    values in 2D section views normal to the       axes. 

 

Fig. 4.2-2: A zoom to the inner spheres of Fig. 4.2-1. Nodes above the threshold              are highlighted. 
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Fig. 4.2-3: Degree centrality   ; 2D section views on the planes X=391, Y=391 and Z=512.  

Then, the degree distribution      of the network, i.e. the fraction of vertices in a 

network with degree  , is discussed. The Fig. 4.2-4 shows such a distribution in log-log 

X=391 

Y=391 

 

Z=512 
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plot and in which is well clear the power-law behavior and the noisy, fat-tail for high 

values of  . As suggested by Boccaletti et al. [12], the cumulative degree distribution is 

evaluated. In Fig. 4.2-5, indeed, the cumulative distribution is smooth and it is easy to 

find the exponent           of the power-law                in the range  

               (which contains about the 60% of all values of  ), with an high 

coefficient of determination        , meaning that the network is scale-free. Hence, 

the exponent of          can be calculated as              , which is very close 

to the real network scaling range            , although typically found over the entire 

range of  . 

 

Fig. 4.2-4: Degree distribution P(k). 

 

Fig. 4.2-5: Cumulative degree distribution (blue) and the power law behavior (red). 

It is worth the effort to highlight that the existence of high-degree pattern well 

distinguishable was totally unexpected analyzing a statistically homogeneous and 

isotropic field. That is because, usually, coherent turbulent structures appear if there 

are spatial inhomogeneities, such as a wall or a body in the fluid flow. Therefore, since 

the energy forcing acts to larger scales while the analysis is based on the Taylor scale, it 

was expected a spotted or homogeneous spatial distribution. 
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The second centrality index analyzed is the eigenvector centrality defined in Eq. 

(2.7). The results illustrated both in Fig. 4.2-6 and in Fig. 4.2-7 confirm what 

previously found with the degree centrality analysis. Despite the eigenvector centrality 

index seems to exhibit a coarser centralization of the nodes, the analogy with the 

degree centrality is well clear both in a three-dimensional (cf. Fig. 4.2-2) and two-

dimensional views. However, while the degree centrality values have a specific 

topological meaning — being the cardinality of the neighborhood of a node in the 

network — the values of ranking provided by eigenvector centrality have no particular 

topological meaning. Indeed, the same partition of the network would be obtained 

rescaling the eigenvector of the adjacency matrix by the same constant quantity.  

 

Fig. 4.2-6: Eigenvector centrality distribution. (left) 3D perspective; (right) 2D section on the Z=512 plane. 

 

Fig. 4.2-7: Comparison of eigenvector (left) and degree (right) centralities in 2D sections on the Z=512 plane of the 

inner sphere. Scales of values are referred to the sections. 

The third centrality index analyzed is the betweenness centrality, defined in the 

equation (2.6), limited to the only inner sphere. Unlike the degree and eigenvector 

centralities, the    exhibits a spotted spatial distribution with significantly high 

gradient values; indeed, there are a few high values that are three to four orders of 

magnitude greater than the lower ones (Fig. 4.2-8). 
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Fig. 4.2-8: Betweenness centrality distribution; 2D section views of the inner sphere on the planes X=391, Y=391 and 

Z=512. The values are in a non-linear color scale in order to highlight lower values and to mitigate the strong gradient. 

X=391 

Y=391 

 

Z=512 
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Since no sources of inhomogeneity and anisotropy are present in the field, there are no 

preferential pathways based on shortest-paths; an alternative option could be, then, to 

evaluate the random betweenness centrality that includes contribution from many 

paths that are not optimal in any sense. As said in the previous chapter, high 

computation time is required in the evaluation of the shortest paths, due to the 

complexity and large size of the network. Therefore, considering the strong spatial 

constraints and spherical symmetry of network, the closeness centrality of Eq. (2.5) is 

not evaluated and then it is left to a future analysis. 

For the sake of completeness, the degree-based Freeman centralization index 

defined in Eq. (2.9) is also calculated only for nodes    belonging to the inner sphere. 

Since the centralization measure is an index of how tightly the network is organized 

around its most central point, the resulting value          is as expected quite low 

because the spatial closeness of the nodes in network and the high link density make 

the network far to be a stair (or a wheel).  

4.2.1. Assortativity analysis 

Here the degree correlation of the network is briefly showed and discussed. 

Remembering that a network can be classified as  

 assortative, if its vertices show a preference to attach to others vertices that 

are similar in some way, specifically in degree centrality, 

 disassortative, if vertices show a preference to attach to others vertices that 

are different in degree centrality, 

 uncorrelated or non-assortative, if there is no correlation between vertices, 
 

the following five parameters are considered: the joint degree distribution; the k-

nearest neighbors; the Pearson degree correlation coefficient; the conditional 

probability and the Rich-club metric. More precisely, only the first three give 

information about assortativity of the network, from the most detailed to the most 

summarizing; the fourth one is considered only if degree correlations between nodes is 

found. The Rich-club coefficient, instead, can be viewed as a specific index of how 

nodes link together.  

The joint degree distribution, i.e. the probability that an arbitrary link connects two 

nodes of degree   and   , is shown in Fig. 4.2-9 as a pseudocolor (checkerboard) plot. 

Evidently, the plot is symmetric because the network is undirected, it is quite spread 

and display very low probability values. In particular, nodes with lower    tends to link 

with nodes having medium-high degree (upper and left parts of the figure), nodes with 

medium    tends to link roughly uniformly with all other nodes (middle part of the 

figure), while nodes with higher    tend to link mainly with nodes with high degree 

(lower and right parts of the figure). To summarize, the plot of Fig. 4.2-9 does not 

show a strong tendency of any degree values towards any other degree values with 

high probability; the network, therefore, seems to be almost uncorrelated.  

The k-nearest neighbors parameter, instead, gives a more condensed view on how 

nodes of specific degree   tend to be linked on average. Fig. 4.2-10 confirms the 
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prevision suggested by the joint degree distribution: indeed, the plot does not exhibits 

a monotonic behavior for       , whereas the tendency is "fluctuating" and limited 

to a     range about                .  

The Pearson degree correlation parameter summarizes what previously said in a 

scalar value. The calculated coefficient is, indeed,               which means that 

the assortativity is almost absent (very low value of  ) but it tends to be positive. 

  

Fig. 4.2-9: The joint degree distribution as a pseudocolor (checkerboard) plot. 

 

Fig. 4.2-10: The k-nearest neighbors distribution knn. 
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In conclusion, the network analyzed is non-assortative, though with a slight 

inclination of nodes of similar degree to be linked. The degree distribution     , 

hence, fully determines the statistical properties of the network. However, for the sake 

of completeness, in Fig. 4.2-11 the conditional probability        , i.e. the probability 

that a link is incident to a pair of nodes of degrees   and   , is shown. 

 

Fig. 4.2-11: The conditional probability P(k'|k) as a pseudocolor (checkerboard) plot. 

Last parameter evaluated is the Rich-club coefficient     , which is an indicator of 

the tendency of high degree vertices to link to each other. The plot in Fig. 4.2-12 

reveals, despite some noise for high  , an increasing trend for       . The network 

then can be said to show a Rich-club phenomenon, despite it is non-assortative.  

 

Fig. 4.2-12: The Rich-club coefficient     ; the degree   is normalized with the maximum value and reported in %.  
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4.3 Other structural properties 

The clustering coefficients defined in equations (2.13) and (2.14) are here discussed. 

Fig. 4.3-1 shows the local clustering in the section       and it is interesting to note 

that the highest and lowest values are located in the outer sphere. This behavior can be 

explained as follows: since the cardinality of the neighborhoods of external nodes is 

low (i.e. low degree centrality values), it is easy to find that nodes in small 

neighborhood are linked at all or not at all, without middle ways. So, the analysis is 

limited to the solely inner sphere.  

 

 

 

Fig. 4.3-1: Clustering coefficient    on the section Z=512. 
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As can be seen in the Fig. 4.3-2 in which the section       is considered, the local 

clustering (bottom panel) is poorly related to the degree centrality (top panel); the 

same consideration is true also for the other sections of the domain (cf. Fig. 4.2-3 and 

Fig. 4.3-3). As previously said, many real networks have a hierarchical dependence 

between      and  , while in many others where there are strong spatial constrains, 

such as the network here analyzed, the clustering coefficient and the degree centrality 

are independent. 

 

Fig. 4.3-2: Comparison of degree centrality (upper panel) and clustering coefficient (lower panel) in 2D sections on the 

Z=512 plane of the inner sphere. Scales of values are referred to the sections. 

The global clustering coefficient of the entire network              is a quite 

high value, a typical behavior of real networks (in particular those that exhibit a small-

world property). Evaluating the global clustering coefficient for the inner sphere 

network only, the value diminishes to                 because many clusters of 

order three are removed since they are located externally from the inner sphere.  

X=391 

Y=391 
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Fig. 4.3-3: Clustering coefficient   ; 2D section views of the inner sphere on the planes X=391, Y=391 and Z=512.  

X=391 

Y=391 

 

Z=512 
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To sum up, the local clustering, the degree, the eigenvector and the betweenness 

centralities of the network in the section       are displayed in Fig. 4.3-4. 

 

Fig. 4.3-4: (a) Degree centrality, (b) eigenvector centrality, (c) local clustering coefficient, (d) betweenness centrality (a 

non-linear color scale is used). Results are displayed on the section Z = 512 of the inner sphere. 

The average physical distance defined in Eq. (2.16) is then analyzed. This index is 

introduced in this work mainly for two reasons: firstly — just as for betweenness and 

closeness centralities — in order to avoid the high computational cost in terms of time, 

due to the expensive calculation of all the shortest-paths of such a large network; 

secondly, an average topological distance loses significance in a network with high-

spatial restrictions and spherical symmetries. The average physical distance   , 

instead, is a more appropriate index because it considers physical distances — which 

are more suitable for a spatial network — and, taking the averages only among nodes 

of the same neighborhood, provides a direct information about the order of magnitude 

of the size of the effective influence region of each node.  

Fig. 4.3-5 shows    in the section       and it is pretty clear that — just as in the 

local clustering — the minimum and maximum values of    are located externally from 

the inner sphere. Thus, since both the cardinality of the neighborhoods of the external 

nodes is low and their location is far from the center of the network, the average 

topological distance varies from high values (where dominate the farness) to low 

values (where dominate the small size of the neighborhood).  

(a) 

(c) 

(b) 

(d) 
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Fig. 4.3-5: Average physical distance    on the section Z=512. 

Moreover,    is compared with the degree centrality in Fig. 4.3-6. Without 

overstating the analogy, it can be affirmed that the average physical distance is closely 

related with the degree centrality, so    gives the order of magnitude of the spatial 

patterns identified by    distribution. The mean value for the entire network is 

               which corresponds to a grid distance of about 12.5 cells. 

 

Fig. 4.3-6: Comparison of average physical distance (left) and degree centrality (right) in 2D sections on the Z=512 

plane of the inner sphere. Scales of values are referred to the sections. 

To complete the set of structural metrics, the tendency to form organized groups in 

the network, called communities, is discussed and carried out through the analysis of 

modularity   defined in Eq. (2.18). As previously stated, the modularity is a parameter 

used to quantify the division of a network and a way to find the best partitioning in 

communities of the network is to maximize  . It can also be remembered that     

should be found if links are distributed randomly in the graph and values of Q above 

    suggest strong division of the network [40].  
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Among all the algorithms and techniques used for this purpose, in this work, only 

two have been used, both following the idea to maximize  :  

 the Newman's spectral algorithm, based on the concept of modularity matrix, 

that provides a division of the network in "indivisible sub-networks" [42];  

 the fast and heuristic Louvain algorithm. 
 

Since the former is well documented as one of the best algorithm to find communities, 

it is here used for the partitioning of the network. The latter, instead, it is used only as 

a comparison, mainly to verify the order of magnitude of   rather than to find 

effectively the network division. Table 4.1 summarizes the main results for the two 

algorithms selected. Both the algorithms provide a modularity value above    , 

suggesting then a strong division of the network. 

 

Algorithm Network Modularity,   # Communities,   

Newman Internal [b]         

Louvain[a] Full-Internal              

Table 4.1: Community features. [a]The values are calculated considering the inner sphere only, with a resolution 

parameter between     and    . 

Considering only the Newman's algorithm, a deeper analysis can be carried out such 

as the modularity and the mean degree of each community or how well each 

community identifies the high-degree clusters just seen (cf. Fig. 4.2-1 and Fig. 4.2-2). 

The modularity and mean degree distributions,     ,       , over found communities   

is reported in Fig. 4.3-7; the following relation holds         .  

 

 

Fig. 4.3-7: In blue, modularity distribution over the twenty-eight communities, q(c); in green, the mean degree     of 

each community. Red spots highlight the eight more numerous communities. 
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Fig. 4.3-8: A comparison of the eight more numerous communities (top), with their modularity value q(c), and the 

degree centrality in the same 3D perspective (bottom). In both cases nodes with              are filtered. 
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Modularity is not uniformly distributed over the communities, as eight modules 

have   values close to zero, while one community has the highest   value (0.055), 

which is about 18% of the total modularity value,  . The analysis is then limited to 

high-degree nodes, in particular nodes with degree           . Fig. 4.3-8 compares 

clusters of high-  nodes (bottom panel) with nodes of high-  in the eight communities 

with highest      values and most numerous (top panel;cf. also red spots in Fig. 4.3-7). 

The eight communities are chosen according to the relation               and 

avoiding those with a number of nodes with high-degree (          ) less than    

(which is about     of the higher cardinality). From the comparison of Fig. 4.3-8 it is 

clear that high modularity communities include a large number of high-  nodes; 

indeed, the fraction of nodes with degree above     of the maximum value inside the 

eight high-     communities is about      . Newman algorithm, hence, turn out to be 

a very useful tool to find communities in real, spatial networks. 

4.4 Physical interpretation of results 

In the light of results just discussed in the previous sections, the most meaningful 

parameter turns out to be the degree centrality,  , together with the eigenvector 

centrality, both direct measures of the importance of nodes in the network. In order to 

interpret the network results in terms of physical properties of the turbulent field, the 

highest degree centrality node and another one with very low degree centrality are 

considered, respectively called     and     nodes. Moreover, other two nodes, called 

  and  , at an intermediate physical distance                (10 grid cells) from 

nodes     and     respectively are considered. Some features of     and     nodes 

are reported in Table 4.2, while for the nodes   and   is sufficient to specify their 

respective coordinates,                 and                . 

 

 Node     Node     

Coordinates                             

Degree centrality,                          

Neighborhood cardinality,                 

Average physical distance,                          

Table 4.2: Topological and spatial features of two nodes with high (HDC) and low (LDC) degree centrality. 

The neighborhoods of the     and     nodes are displayed in Fig. 4.4-1. The 

temporal series of the vorticity modulus      for the two pairs of nodes,         and 

        are then evaluated and showed in Fig. 4.4-2 and Fig. 4.4-3.  
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Fig. 4.4-1: Positions of HDC, A, LDC and B nodes and neighborhoods of HDC and LDC nodes are shown. 

 

 

Fig. 4.4-2: Time series of the vorticity modulus     are shown for the pair (HDC-A); the corresponding correlation 

coefficient, R, is also reported. 
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Fig. 4.4-3: Time series of the vorticity modulus     are shown for the pair (LDC-B); the corresponding correlation 

coefficient, R, is also reported. 

For each pair of nodes is also calculated the linear correlation coefficient  , reported 

in the figures: the couple         exhibits a strong temporal correlation        for 

     while the couple         has a much weaker temporal correlation       . The 

behavior of the pairs         and         is also found for many other couples of 

nodes in the network. As instance, considering two nodes      and     , with features 

reported in Table 4.3, and nodes                  and                 , distant 

10 grid cells along the X-axis from nodes      and     , the linear correlation 

coefficients for the couples           and           are        and        

respectively. 

 

 Node      Node      

Coordinates                             

Degree centrality,                          

Neighborhood cardinality,                

Average physical distance,                          

Table 4.3: Topological and spatial features of other two nodes with high (HDC') and low (LDC') degree centrality. 
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Thus, the behaviors for the two pairs just discussed are representative — 

respectively — of high and low degree centrality regions. It can be concluded that in 

general high degree centrality values indicate regions with the same instantaneous 

vorticity, that is, by definition, turbulent patterns coherently moving over the acquired 

time scale   . Besides, the average physical distance   , since is directly correlated with 

the degree centrality    (cf. Fig. 4.3-6), gives the order of magnitude of the spatial 

patterns identified by the    distribution, whose size ranges between the dissipative 

scale and the Taylor microscale. 

 

4.5 Sensitivity analyses 

The results previously illustrated and discussed have shown many interesting 

features. Indeed, they reveals a lot of typical properties of real and spatial networks (as 

a power law degree distribution) but also new insights into the spatial characterization 

of a turbulent flow (especially by degree centrality and by average physical distance). 

All the provided results are evaluated on a network built with a fixed threshold value 

      and considering the entire set of temporal series           .  

Two sensitivity analyses are here carried out, firstly considering different thresholds 

for a fixed set of energy time series, later examining different temporal windows, 

shorter than the complete one, at a fixed threshold  . 

4.5.1. Selecting a different threshold   

The first sensitivity analysis consists in changing the threshold   on the hypothesis 

3) of the network building. Beside      , networks for two different threshold values 

have been analyzed, specifically        and       .  

In Table 4.4 some general, topological and spatial features of the three networks are 

compared. As the threshold   decreases, the network size grows both in   and   but 

the number links increases more rapidly than the number of nodes (Fig. 4.5-1); the 

opposite behavior holds if the threshold increase from       to       . 

In detail, while the number of nodes    inside the inner sphere does not vary as   

changes, the ratio      of internal links with respect to the total number increases 

when    . This behavior confirms again that nodes inside the inner sphere are 

strongly linked and this is emphasized when the threshold grows in value. 
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Nodes,                          

Internal nodes,                         

Links,                                     

Internal links,                                    

Edge density,                           

Average degree,                                      

Mean A.P.D.,                                      

                                      

                                      

Table 4.4: Main features of the networks with                . HDC = (385, 401, 508) and LDC = (372, 387, 510). 
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Fig. 4.5-1: Ratios of nodes (blue) and links (red) for networks at different   to those at      . (Green) ratio of internal 

and total links. 

In Fig. 4.5-2 the degree centrality and the average physical distance on the plane 

        are reported for the three values of the threshold  . As the threshold is 

reduced, both the average degree centrality     and the mean average physical distance 

    decrease (Fig. 4.5-3), the former more rapidly than the latter; moreover, the 

regions with high values of    and    become more spatially expanded (Fig. 4.5-2). 

However, the order of magnitude of the spatial patterns — identified by high-   nodes 

and quantified by     for the entire network and by      and      for two 

representative nodes — does not substantially vary.  



New insights into spatial characterization of turbulent flows: a complex network-based analysis 

 
82 

 

 

Fig. 4.5-2: Comparison of degree centrality (left) and average physical distance (right) in 2D sections on the Z=512 

plane of the inner sphere, for the three threshold values of  . Scales of values are referred to the sections. 

In conclusion, despite the specific values assumed and the qualitative changes 

induced by the three threshold values, the spatial pattern detection is essentially 

independent from the choice of  . If properly set, thus, the threshold value becomes a 

resolution parameter able to bring out spatial patterns (if   is close to one too much 

information may be discarded, while a too low value of   could spread the topological 

distributions, making the pattern detection much harder). 

τ =0.85 

τ =0.9 

τ =0.95 

                           Degree Centrality                  Average Physical Distance  
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Fig. 4.5-3: Average degree centrality     and mean value of average physical distance     for the three networks built 

with the different threshold values                . 

4.5.2. Networks based on different temporal windows 

A second sensitivity analysis is carried out considering different temporal windows 

from the complete one (TWC), and at fixed threshold      . For the purpose, the 

following three slices of the complete time series (1-1024) are considered (Fig. 4.5-4):  

 TW1, with time series          , 

 TW2, with time series            , 

 TW3, with time series             , 
 

which partially overlap and have all the same length (600 acquired times). In Table 4.5 

and Fig. 4.5-5, the main features of the three networks are reported and compared 

with the complete temporal window (TWC). 

 

Fig. 4.5-4: Sketch of the three temporal windows analyzed in comparison with the complete one (TWC),           . 
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Nodes,                                  

Internal nodes,                                

Links,                                             

Internal links,                                               

Edge density,                                  

Average degree,                                                 

Max degree,                                                     

Min degree,                                                     

Mean A.P.D.,                                                 

Table 4.5: Main topological and spatial features of the networks built on different temporal windows; last column 

reports the values of the complete temporal window as a comparison. 

 

 

Fig. 4.5-5: Ratios of nodes (blue) and links (red) for networks built on the three different temporal windows to those of 

the complete temporal windows         . 

The degree centrality spatial distributions are displayed both in a three-dimensional 

(Fig. 4.5-6) and bi-dimensional (Fig. 4.5-7) section views. As can be clearly observed, 

the sub-networks visibly change their features passing from the TW1 to the TW3. Both 

the number of nodes and links grow but at different rate (Fig. 4.5-5); indeed, M 

increases of two order of magnitude from TW1 to TW3, while N only doubles. 
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Fig. 4.5-6: Degree centrality in a 3D perspective for the networks with       and based on different time series. 

TWC: complete series         ; TW1: first temporal series        ; TW2: second temporal series          ; TW3: 

third temporal series           . 

Then, despite the last sub-network shows just more nodes and links than the TW2 

sub-network, the degree centrality distributions look much different if the nodes with 

   above the 50% of the maximum value (in a unique scale) are highlighted, as 

reported in Fig. 4.5-6. This behavior is reflected on the mean values of    (Fig. 4.5-8): 

the TW2 sub-network, indeed, has the highest value of     because there is a lower 

number of nodes than the TW3 sub-network but they have higher degree values. To 

summarize, the temporal evolution of the three sub-networks suggests that spatial 

patterns can emerge and persist as long as the statistical stationarity of the field is 

preserved. The complete window network, instead, summarizes a framework which is 

the result of all the spatiotemporal connection variations over an integral timescale,   . 

TW1 
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TW2 

 

TW3 
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Fig. 4.5-7: Degree centrality of networks based on the four temporal windows in 2D section views on the plane Z=512.  

 

Fig. 4.5-8: A comparison of average degree centrality     and mean value of average physical distance     between the 

three sub-networks built on smaller time series and the complete one. Threshold      . 
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4.6 Network on different regions: a comparison 

As a final point, another network based on a different sphere of radius         has 

been studied. This part of domain, previously called region-2, is centered in    

             , whose physical distance from node                 is about     , 

which is largely exceeding the integral scale,          .  

The network is built with the same three hypotheses used in region-1 analysis, with 

a fixed threshold value       and considering the complete kinetic energy temporal 

series,           , reported in eight panels in Fig. 4.6-1 and Fig. 4.6-2. 

 

 

Fig. 4.6-1: Time evolution of the kinetic energy field in the section Y=673 of the outer sphere, T=1, 150, 310, 440.  

T = 1 T = 150 

T = 310 T = 440 
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Fig. 4.6-2: Time evolution of the kinetic energy field in the section Y=673 of the outer sphere, T=585, 730, 880, 1024.  

 

 

 

 

T = 585 T = 730 

T = 880 T = 1024 



Chapter 4: Results and Network Analyses 

  

 
 

89 
 

In Table 4.6 and Fig. 4.6-3, the main results are reported and compared. 
 
 
 
 

 Region-1 Region-2 

Nodes,                

Internal nodes,                

Links,                     

Internal links,                      

Edge density,                    

Average degree,                           

Average neighborhood 

cardinality,               
          

Mean A.P.D.,                           

Clustering Coefficient,                         

Table 4.6: Main topological and spatial features of networks of different regions.  

 

  

Fig. 4.6-3: : Ratios of nodes, total and internal links, average degree     and mean value of average physical distance 

    for network of region-2 to those of region-1. 
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As can be seen, both the number of nodes and links are lower in region-2 but, 

generally speaking, results are quite similar to those of region-1. The average degree, 

the mean value of the average physical distance and the global clustering coefficient 

are, indeed, different in values but their order of magnitude does not change 

significantly.  

In addition, the network built on second region also displays a power law behavior 

for the cumulative degree distribution with a power exponent nearly the same of 

region-1 (Fig. 4.6-4) and with the same degree of approximation (the coefficient of 

determination         is the same in both cases). 

 

 

Fig. 4.6-4: Cumulative degree distributions (blue, red) and the power law behaviors (green, black) for region-1 and 

region-2, respectively. The exponents are almost equal with the same coefficient of determination. 

Fig. 4.6-5 shows two 3D views of the    map for the region-2. Despite the spatial 

distribution differences with the region-1 and the specific values of the topological 

features, it is quite evident the presence of clusters with high degree with nearly the 

same mean value of average topological physical distance. 
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Fig. 4.6-5: Two 3D visualizations of the inner spheres of region-2. Nodes above the threshold         are highlighted. 
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Fig. 4.6-6 shows the degree and eigenvector centralities, the average physical 

distance and the local clustering coefficient in the 2D section      .  

 

Fig. 4.6-6: Region-2: (a) degree centrality, (b) eigenvector centrality, (c) average physical distance, (d) local clustering 

coefficient. Results are displayed on the section Z = 475 of the inner sphere. 

Therefore, the presence of spatial patterns with different size and intensity (though, 

quite similar as orders of magnitude) is not limited to the chosen domain portion but 

can involve the whole turbulent field, despite it is statistically homogeneous and 

isotropic.  
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Conclusions 

In the present work, the complex network tools have been applied to study a forced 

isotropic turbulent field. It was expected that the analysis of a spherical, randomly 

selected sub-region of the domain (with size of the order of the Taylor microscale) 

does not provide particular, organized patterns but spotted or homogeneous spatial 

distributions of the fluid dynamics parameters evaluated. Indeed, both the features of 

the chosen turbulent flow (which is statistically homogeneous and isotropic at smaller 

scales with a energy forcing at larger ones) and the relatively short simulation time 

interval acquired (that is just only one integral timescale) do not suggest — a priori — 

a plausible reason to find a network metric that may highlight coherent patterns in the 

turbulent flow.  

The evaluation of the spatial distributions of the degree centrality,   , and the 

eigenvector centrality, however, reveals that spatial coherent patterns exist and that 

they are identified by high values (indicatively above of the 70% of the maximum) of 

both the centrality indices. A new metric, named as average physical distance,   , was 

then introduced to estimate the size of the neighborhoods of the nodes in the network. 

The spatial distribution of    (which varies from small scales up to the Taylor 

microscale) follows, as expected, quite closely the degree centrality distribution; the 

average physical distance provides, hence, a useful measure of the size of such spatial 

patterns. 

Conversely, the betweenness centrality and the clustering coefficient showed 

spotted distributions, in particular with high gradient values in the former. The 

clustering coefficient and the degree centrality are found to be independent 

presumably because of the strong spatial constraints of the network; that is a typical 

behavior of spatial, real network as reported in many other works. 

The community detection is the other important topological feature of the network 

that has been studied. Two algorithms were used, both based on the maximization of 

the modularity: (i) the Newman's method, which applies a recursive, spectral 

algorithm to the so called modularity matrix of smaller and smaller sub-networks; (ii) 

the Louvain method that is much faster than the Newman's one but less accurate, 

since a heuristic algorithm is used. Both the methods provided modularity values 

     , meaning there is a pronounced division of the network in smaller, self-

organized structures. Moreover, the network division obtained with the Newman's 

method indicates that nodes with high degree centrality values also belong to 

community with higher values of modularity. Therefore, these results confirm the 

elevate capability of the Newman's method to find communities quite accurately. 

Besides, other features of the network were briefly analyzed. The power law scaling 

of the degree distribution      and of the cumulative degree distribution         
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indicates that the network is scale-free in a limited range of degree centrality values. 

An assortativity study was also carried out revealing — through the evaluation of the 

joint degree distribution, the k-nearest neighbors parameter and the Pearson degree 

correlation parameter — that the network is non-assortative but it exhibits a Rich-club 

phenomenon. 

In order to complete the study, a physical interpretation of results was provided. 

Two pairs of nodes were selected: the first couple includes one node with a high-   

value (HDC) while the second couple includes a node with a low-   value (LDC) and 

the other two nodes were selected to be at a fixed distance from HDC and LDC nodes. 

The linear correlation coefficients of the time series of the vorticity modulus was then 

calculated for each pair: while the couple with HDC node exhibits a high temporal 

correlation, the couple with LDC node instead shows lower values of correlation. This 

behavior is representative of high and low degree regions, meaning that, in general, 

high values of    indicate regions with the same instantaneous vorticity, i.e. turbulent 

patterns coherently moving over the integral timescale   . 

 Additionally, the results of the two sensitivity analyses carried out indicate that — 

despite the specific values assumed and the qualitative changes induced by the 

threshold value   and by changing the temporal window — the spatial pattern 

detection is essentially independent from the choice of   and such patterns (as well as 

all the sub-networks) exhibit a temporal evolution over the integral timescale.  

Furthermore, despite the differences in general, spatial and topological features 

(such as the number of nodes and links), the structural analysis of the network built on 

the region-2 shows the same behavior of the first region. Indeed, both the degree and 

eigenvector centralities highlight the presence of coherent patterns over the integral 

timescale, while the average physical distance quantifies the size of such patterns. The 

presence of spatial patterns with different size and intensity is not limited then to the 

chosen sub-domain but can involve the whole turbulent field.  

 

In the wake of the great development of the complex networks in practical 

applications that took place in the last years — in particular those regarding turbulent 

flows —, the procedure illustrated in this work turns out to be a useful tool to identify, 

in a systematic way, spatial patterns on turbulent regions. In this context, the metrics 

and the structural properties provided by network theory are a suitable tool to 

investigate the spatial characterization of turbulent flows, since a huge amount of 

detailed information can be synthesized in a single framework.  

However, the ability of the large complex networks to condensate in a single 

framework the essential information is a double-edged sword. On one side, indeed, a 

multipoint analysis can be carried out with few suitable metrics; on the other side, 

though, the huge amount of data that needs to be handled, both in the pre and post-

processing stages, requires high computational capabilities and costs (which are not 

even known a priori). The first great operative limitation encountered was the 

evaluation and the assembly of the matrix with the correlation coefficients, since its 

size scales as the square of the number of nodes in the network, and that is reflected on 
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the adjacency matrix. The partitioning as used in this work is a solution but, naturally, 

higher computational performance are suggested as first improvement.  

Moreover, beyond the computational point of view, the choice of which software 

should be used to build the network and to visualize the results is not trivial. There 

exists, as a matter of fact, many tools (in some cases developed ad hoc for specific 

applications) capable to handle huge amount of data or to deal with large complex 

networks. Nonetheless, each new implementation of the network theory to a different 

research area or a particular subject (such as the study of turbulent flows) involve 

particular requirements often satisfied by a combination of more than one software. 

Anyhow, this choice is subordinated or in conjunction with the available 

computational capacity, as already mentioned. 

Future investigations can involve several aspects of the work. First of all, different 

types of flows may be explored, such as flows with strong spatial, thermal or density 

inhomogeneities; these can be also studied through other approaches, as the visibility 

algorithm or recurrence networks. Secondly, the hypotheses underlying the network 

building may be slightly modified, especially in the size of spheres considered. In 

addition, further parameters can be evaluated, as alternative to those unsuitable for 

the purpose, such as the random betweenness centrality instead of betweenness 

centrality defined with the shortest paths. A deeper attention may be also dedicated to 

the sensitivity analysis based on different temporal windows: sub-networks built with 

shorter time intervals could be a starting point to develop a dynamic study of the 

complex network considered.  

In conclusion, the proposed approach can suggest new insights into the spatial 

characterization of turbulent flows and the application to a wide range of fluid systems 

seems to be promising and is worth additional future investigation. 
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