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Introduction 
 

A linear stability study is here presented for two dimensional non-parallel flows in 
the intermediate and far wake behind a circular body. 

 

The hydrodynamic stability analysis is developed within the linear theory of 
normal modes; through a perturbative approach, it is observed the behavior of 
small oscillations applied to the base flow. 

 

An analytic expression of the base flow according to Navier-Stokes model is given 
by an asymptotic expansion (Tordella and Belan, 2003; Belan and Tordella, 2002), 
which considers non-parallelism effects (such as exchange of transverse 
momentum and entrainment). 

 

It is supposed that the system slowly evolves in space (Tordella and Belan, 2005) 
and also in time; using multiple spatial and temporal scales, we can verify how this 
evolution influences the stability characteristics and discuss about a validity 
domain for parallel flow.  



Basic equations and physical problem 

Steady, incompressible and viscous base flow described by continuity and Navier-

Stokes equations with dimensionless quantities U(x,y), V(x,y), P(x,y)  and  cost 

Boundary conditions: 
symmetry to x, uniformity at 
infinity and field information in 
the intermediate wake 

R =UcD/ 



To analytically define base flow, its domain is divided into two regions both 
described by Navier-Stokes model 
 
                
              Inner region flow ->                                                                                ,  
 
 
               
              Outer region flow ->                                                                             , 
 
 

Physical quantities involved in matching criteria are the pressure longitudinal 
gradient, the vorticity and transverse velocity. Inner and outer expansions are used 
to obtain the composite expansion                                            which is, by construction, 
continuous and differentiable over the whole domain. 

Accurate representation of the velocity and pressure distributions (obtained without 
restrictive hypothesis) and analytical simplicity of expansions. 

Here we take the inner expansion up to third order as base flow solution for the 
wake. 
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R = 34, x/D = 20. Fourth 

order of accuracy – Inner, 
outer and composite 
expansions for velocity 
and pressure. 



R = 34, x/D = 20. Comparison of the present fourth order outer and composite, 
Chang's outer and composite (1961), Kovasznay's experimental (1948) and 
Berrone's numerical (2001) longitudinal velocity distributions.  



Stability theory 

Base flow is excited with small oscillations. 

Perturbed system is described by Navier-Stokes model 

 

Subtracting base flow equations from those concerning perturbed flow and 
neglecting non linear oscillating terms, the linearized perturbative equation in term 
of stream function                     is  

 

 
 
 
 
 
 
 

Normal modes theory  
 

Perturbation is considered as sum of normal modes, which can be treated separately 
since the system is linear. 
 

                    complex eigenfunction,  
 

u*(x,y,t) = U(x,y) + u(x,y,t) 
v*(x,y,t) = V(x,y) + v(x,y,t) 
p*(x,y,t) = P0 + p(x,y,t) 



                                                                                                                   k0: wave number                                          
h0 = k0 + i s0                       complex wave number               s0: spatial growth rate 
0 = 0 + i r0                                   complex frequency                     0: frequency 
                                                                                                      r0: temporal growth rate 
 
Perturbation amplitude is proportional to                     
 

• r0    0 for at least one mode                                    unstable flow 

• r0       0 for all modes                                                  stable flow 

• s0    0 for at least one mode                                    convectively unstable flow 

• s0    0 for all modes                                                   convectively stable flow 

 
Convective instability: r0  0 for all modes, s0  0 for at least one mode. 
Perturbation spatially amplified in a system moving with phase velocity of the wave 
but exponentially damped in time at fixed point.  
  
Absolute instability: r0       0  (vg=0/k0=0 local energy increase) for at least one 
mode. Temporal amplification of the oscillation at fixed point. 



Stability analysis through multiscale approach 

Slow spatial and temporal evolution of the system              slow variables x1 = x, t1 = x.  

= 1/R is a dimensionless parameter that characterizes non-parallelism of base flow.   

Hypothesis:                     and                      are expansions in term of : 

                                                                 

 

 

By substituting in the linearized perturbative equation, one has 

(ODE dependent on        ) + (ODE dependent on       ,        ) + O (2) 

Order zero theory. Homogeneous Orr-Sommerfeld equation (parametric in x1 ). 

 

 

 

 
 

where                                                               , and A(x1,t1) is the slow spatio-temporal 
modulation, determined at next order. 
 

By numerical solution                   eigenfunctions 0 and a discrete set of eigenvalues 0n  



 

First order theory. Non homogeneous Orr-Sommerfeld equation (x1 parameter).   

 

 

 

 

 

        is related to base flow and consider non-parallel effects through transverse 
velocity presence 



To obtain first order solution, the non homogeneous term is requested to be 
orthogonal to every solution of the homogeneous adjoint problem, so that  
 
 
 
 
 
 
 
 
Keeping in mind that                                                         , the complete problem gives 
 
 
 
First order corrections h1 e 1 are obtained by resolving numerically the evolution 
equation for modulation and differentiating numerically a(x,t) with respect to 
slow variables. 

 



Perturbative hypothesis – Saddle points sequence 
 

From order zero theory it’s possible having a first approximation of the dispersion 
relation 0=0(h0, x, R); for fixed values of x and R we individuate the saddle point 
(h0s, 0s), that satisfies condition 0/  h0 = 0, by selecting the eigenvalue with the 
largest imaginary part, using multidimensional maps  
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R = 35, x/D = 4. 
Frequency and 
temporal 
growth rate – 
Level curves.  
0=cost (thick 
curves), r0=cost 
(thin curves) 



0(k0,s0) - R = 35, x/D = 4.  



r0(k0,s0) - R = 35, x/D = 4.  



Saddle points determination is very sensitive to Orr-Sommerfeld boundary 
conditions and to number and choice of collocation points for order zero 
numerical resolution. 
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This aspect becomes 
more relevant when y-
domain is getting larger, 
that is, for smaller R and 
larger x values. 

For this reason, we use 
truncated Laurent series 
to extrapolate saddle 
points behavior in x from 
data at lower x values, 
that are more accurate.  

R = 50, x/D = 7. 
Frequency and temporal 
growth rate – Level 
curves. 0=cost (dashed 
curves), r0=cost (solid 
curves). 
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R = 35 – Saddle points (open circles) and extrapolated curve (solid line)  

Once known h0s(x) in this way, the relative 0s(x) are given by dispersion relation.  

The system is now perturbed, at every longitudinal station, with  those 
characteristics that at order zero turn out to be locally the most unstable (in 
absolute sense) for base flow. 



Coefficients (Real and Imaginary part) of evolution equation for modulation  

                                                                                  - R = 35, 50, 100  

x x 

              Re(K1)        Re(K2)  

R=35   

R=50 

R=100 

 

                    Im(K1)        Im(K2)  

R=35   

R=50 

R=100 



where           is the adjoint eigenfunction 
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Frequency. Comparison between the present solution (R=35,50,100), Zebib's 
numerical study (1987), Pier’s direct numerical simulations (2002), Williamson's 
experimental results (1988).  



Temporal growth rate. Comparison between the present solution (R=35,50) and 
Zebib's numerical study (1987). 



Validity limits for the near-parallel flow 

 

First order corrections are acceptable when they are much lower than the 
corresponding order zero values; where they are not so, parallel flow theory is no 
longer valid. 

A possible criterion to establish this, is the following 

 

                                                                              

 

where f  is one of the stability characteristics and  is the wave length in x*. 

For fixed R values, these conditions are more restrictive for temporal 
characteristics than for the spatial ones. Spatial growth rate s seems to be already 
well described at order zero, while frequency  is the characteristic which is more 
influenced by first order corrections.  

Increasing R, the region in which the flow can no more be considered parallel 
becomes larger; this region involves not only the near but also part of the 
intermediate wake. 



Conclusions 
 

Validity limits for parallel theory: by observing first order corrections, the 
flow cannot be supposed parallel in the near wake and also in a relevant portion 
of the intermediate wake. 

 

System stability: for what said about acceptable first order corrections, the 
intermediate and far wake is convectively unstable. Positive temporal growth rate 
values  are considered not acceptable, even if they are in a region of the domain 
(the beginning of near wake) in which they would be experimentally confirmed. 

 

Second order corrections (2): seem to be unnecessary, for they would not 
affect results so much in the region where parallel flow theory is valid and they 
would be completely useless where first order corrections are already too big. 


