# Characterizing the cardiovascular functions during atrial fibrillation through lumped-parameter modeling

#### Stefania Scarsoglio<sup>1</sup> Andrea Guala<sup>2</sup> Carlo Camporeale<sup>2</sup> Luca Ridolfi<sup>2</sup>

<sup>1</sup>Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy <sup>2</sup>Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Italy

### 19th International Conference on Mechanics in Medicine and Biology 3-5 September 2014, Bologna, Italy



General aspects State of the art Present work

## What is atrial fibrillation (AF)

 AF is the most common arrythmia due to the disorganized electrical activity of the atria, causing irregular and rapid heartbeats;



General aspects State of the art Present work

## What is atrial fibrillation (AF)

- AF is the most common arrythmia due to the disorganized electrical activity of the atria, causing irregular and rapid heartbeats;
- Symptoms: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;



< □ > < @ > < E > < E</pre>

General aspects State of the art Present work

## What is atrial fibrillation (AF)

- AF is the most common arrythmia due to the disorganized electrical activity of the atria, causing irregular and rapid heartbeats;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- Higher incidence with age: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;



< □ > < @ > < E >

General aspects State of the art Present work

# What is atrial fibrillation (AF)

- AF is the most common arrythmia due to the disorganized electrical activity of the atria, causing irregular and rapid heartbeats;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- Higher incidence with age: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;
- In the USA and Europe 7 million people are currently affected by AF ⇒ incidence is expected to double within the next 40 years;
- AF is responsible for **substantial morbidity** and **mortality** in the general population;



• • • • • • • • • • • • • •

General aspects State of the art Present work

# What is atrial fibrillation (AF)

- AF is the most common arrythmia due to the disorganized electrical activity of the atria, causing irregular and rapid heartbeats;
- **Symptoms**: palpitations, chest discomfort, anxiety, fall in blood pressure, decreased exercise tolerance, pulmonary congestion;
- Higher incidence with age: 2.3% of people older than 40 years are affected, up to more than 8% of people older than 80 years;
- Prevalence is markedly amplifying in industrialized countries;
- In the USA and Europe 7 million people are currently affected by AF ⇒ incidence is expected to double within the next 40 years;
- AF is responsible for **substantial morbidity** and **mortality** in the general population;
- Broad interest: statistical analyses on the heartbeat distributions, risk factors, correlation with other cardiac pathologies.



• • • • • • • • • • • • •

General aspects State of the art Present work

### Open key aspects

Several key points during AF are still not completely understood from literature data:

• **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;



General aspects State of the art Present work

## Open key aspects

Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
- In vivo measures: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;



< □ > < □ > < □ > < □ >

General aspects State of the art Present work

## Open key aspects

Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
- In vivo measures: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;
- The anatomical and structural complexity of some regions (e.g., right ventricle) makes estimates not always feasible and accurate
  substantial absence of well-established information;



< □ > < /i>

General aspects State of the art Present work

## Open key aspects

Several key points during AF are still not completely understood from literature data:

- **Pulmonary and systemic arterial pressures**: hypotension, normotension and hypertension seem to be equally probable;
- In vivo measures: (i) difficulty due to the heart rate variability, (ii) necessity of immediate medical treatment;
- The anatomical and structural complexity of some regions (e.g., right ventricle) makes estimates not always feasible and accurate
  substantial absence of well-established information;
- Presence of other pathologies (hypertension, atrial dilatation, mitral stenosis, ...) ⇒ the specific role of AF is not easily detectable and distinguishable. Side pathology is cause or effect?



General aspects State of the art Present work

### Motivation and Goal

 Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);



General aspects State of the art Present work

## Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.



< □ > < /i>

General aspects State of the art Present work

## Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.
- The main cardiac parameters can all be obtained at the same time, while clinical studies usually focus only on a few of them at a time ⇒ overall good agreement with the clinical state-of-theart measures;



< □ > < /i>

General aspects State of the art Present work

## Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address from a mechanistic point of view the cardiovascular feedbacks which are currently poorly understood.
- The main cardiac parameters can all be obtained at the same time, while clinical studies usually focus only on a few of them at a time ⇒ overall good agreement with the clinical state-of-theart measures;
- Accurate statistical analysis of the cardiovascular dynamics, which is not easily accomplished by in vivo measurements.



< D > < P > < E > <</pre>

Mathematical framework Cardiac cycle simulation

### Cardiovascular scheme



Mathematical framework Cardiac cycle simulation

# Physiologic and fibrillated beating

#### • Normal Sinus Rhythm (NSR)

- RR extracted from a correlated pink Gaussian distribution;
- Time varying (right and left) atrial elastance;
- Full left ventricular contractility;



Mathematical framework Cardiac cycle simulation

# Physiologic and fibrillated beating

#### • Normal Sinus Rhythm (NSR)

- RR extracted from a correlated pink Gaussian distribution;
- Time varying (right and left) atrial elastance;
- Full left ventricular contractility;

### Atrial Fibrillation (AF)

- RR extracted from an exponentially modified Gaussian distribution;
- Constant (right and left) atrial elastance;
- Reduced left ventricular contractility;



< □ > < /i>

Mathematical framework Cardiac cycle simulation

# Physiologic and fibrillated beating

#### • Normal Sinus Rhythm (NSR)

- RR extracted from a correlated pink Gaussian distribution;
- Time varying (right and left) atrial elastance;
- Full left ventricular contractility;

### Atrial Fibrillation (AF)

- RR extracted from an exponentially modified Gaussian distribution;
- Constant (right and left) atrial elastance;
- Reduced left ventricular contractility;



Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

## Left ventricle





2

イロト イヨト イヨト イヨト

Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

## Left ventricle



Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

### Arterial pressure: time series and statistics



| P <sub>sas</sub> [mmHg] | Mean  | Systolic | Diastolic | Pulsatile |
|-------------------------|-------|----------|-----------|-----------|
| NSR                     | 99.52 | 116.22   | 83.24     | 32.99     |
| AF                      | 89.12 | 103.66   | 77.24     | 26.42     |

Scarsoglio et al., Med. & Biol. Eng. & Comput., 2014 (in press).



Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

### Pressure and volume behaviour



| V <sub>la</sub> [ml] | Mean  | End-Systolic | End-Diastolic |
|----------------------|-------|--------------|---------------|
| NSR                  | 56.53 | 64.41        | 55.37         |
| AF                   | 65.95 | 71.41        | 68.84         |



イロト イ団ト イヨト イヨト

Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

### Left heart: mitral and aortic flows



*Q<sub>mi</sub>* and *Q<sub>ao</sub>*: the increased portion of regurgitant flow during short beats is not systematically accompanied by a higher contribute of direct flow ⇒ possible functional mitral regurgitation and aortic valve insufficiency;



< < >> < </p>

Hemodynamic parameters Systemic arterial pressure Left atrium Flow rates

## Right heart: tricuspid and pulmonary flows



*Q<sub>ti</sub>* and *Q<sub>po</sub>*: the greater amount of regurgitant flow due to a rapid beat is in large part compensated by a greater amount of direct flow ⇒ right valves insufficiency is less likely to occur.



Conclusions

### **Discussion and Conclusive Remarks**

 First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;



Conclusions

- First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;
  - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
  - Reduced contractility of the right ventricle and the ventricular interaction should be properly accounted for;



Conclusions

- First attempt to quantify, through a stochastic modeling, the role of acute AF on the whole cardiovascular system;
  - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
  - Reduced contractility of the right ventricle and the ventricular interaction should be properly accounted for;
- Isolate single cause-effect relations, a thing which is not possible in real medical monitoring:
  - the drops of systemic arterial pressure and cardiac output are entirely induced by the reduced ventricular contractility during AF;
  - the decrease of the ejection fraction and the LA enlargement are primarily caused by the irregular heart rate;



Conclusions

### **Discussion and Conclusive Remarks**

 Moderate systemic hypotension and left atrial enlargement should be interpreted as pure consequences of AF alone and not induced by other pathologies;



Conclusions

- Moderate systemic hypotension and left atrial enlargement should be interpreted as pure consequences of AF alone and not induced by other pathologies;
- Accurate statistical description of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;



Conclusions

- Moderate systemic hypotension and left atrial enlargement should be interpreted as pure consequences of AF alone and not induced by other pathologies;
- Accurate statistical description of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;
- **New information** on hemodynamic parameters (e.g., flow rates), difficult to measure and almost never treated in literature;



Conclusions

- Moderate systemic hypotension and left atrial enlargement should be interpreted as pure consequences of AF alone and not induced by other pathologies;
- Accurate statistical description of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;
- **New information** on hemodynamic parameters (e.g., flow rates), difficult to measure and almost never treated in literature;
- Future work:
  - Response to AF with the combined presence of altered cardiac conditions (e.g., left atrial appendage clamping);
  - Modeling response to real beating series for both NSR and AF.

