Cerebral blood flow: possible hemodynamic links between atrial fibrillation and cognitive decline

Stefania Scarsoglio¹

Andrea Saglietto² Matteo Anselmino² Luca Ridolfi¹

¹DIMEAS/DIATI, Politecnico di Torino, Italy

²Division of Cardiology, "Città della Salute e della Scienza" Hospital, University of Turin, Italy

12th European Fluid Mechanics Conference September 9-13, 2018, Wien, Austria

S. Scarsoglio, A. Saglietto, M. Anselmino, L. Ridolfi Heart rate response during AF on cerebral hemodynamics

- Atrial fibrillation (AF)
 - Common arrhythmia: irregular and faster beat;
 - 33.5 million people worldwide in 2010 (to be doubled in 40 years);
 - Disabling symptoms and reduced quality of life;
 - \$ 6.65 billion/year in the USA (2006);

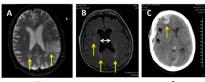
• • • • • • • • • • • •

- Atrial fibrillation (AF)
 - Common arrhythmia: irregular and faster beat;
 - 33.5 million people worldwide in 2010 (to be doubled in 40 years);
 - Disabling symptoms and reduced quality of life;
 - \$ 6.65 billion/year in the USA (2006);

Dementia

- Neurological degeneration: loss of memory, socio-cognitive alterations;
- 81 million people worldwide in 2040;
- Healthcare burden: 2 trillion \$ worldwide (2030);
- Common risk factors with AF (e.g., age);

• Atrial fibrillation (AF)

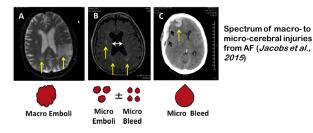

- Common arrhythmia: irregular and faster beat;
- 33.5 million people worldwide in 2010 (to be doubled in 40 years);
- Disabling symptoms and reduced quality of life;
- \$ 6.65 billion/year in the USA (2006);

Dementia

- Neurological degeneration: loss of memory, socio-cognitive alterations;
- 81 million people worldwide in 2040;
- Healthcare burden: 2 trillion \$ worldwide (2030);
- Common risk factors with AF (e.g., age);
- Recent independent association between AF and dementia
 Potential hemodynamic mechanisms: microembolisms, altered cerebral blood flow, hypoperfusion and microbleeds.

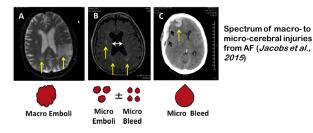
Spectrum of macro-to micro-cerebral injuries from AF (Jacobs et al., 2015)

イロト イ団ト イヨト イヨト



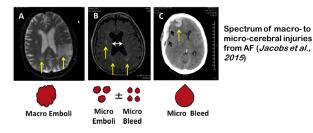
Macro Emboli

Micro Micro Emboli Bleed



Micro Bleed

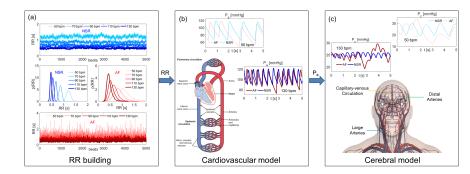
Open Questions


- Linking mechanisms between AF and dementia;
- Consequences of AF rate/rhythm control on cognitive decline;
- Lacking clinical measures in the cerebral microcirculation.

Open Questions

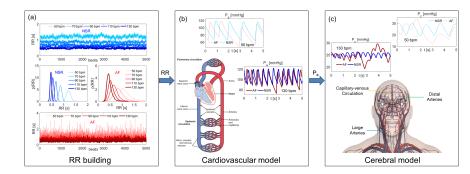
- Linking mechanisms between AF and dementia;
- Consequences of AF rate/rhythm control on cognitive decline;
- Lacking clinical measures in the cerebral microcirculation.
- Modeling approach for the cerebral hemodynamics during AF Anselmino et al., Sci. Rep., 2016; Scarsoglio et al., J. R. Soc. Interface, 2017; Scarsoglio et al., Chaos, 2017

< ロ > < 同 > < 回 > < 回 >

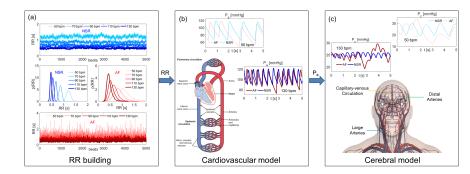

Open Questions

- Linking mechanisms between AF and dementia;
- Consequences of AF rate/rhythm control on cognitive decline;
- Lacking clinical measures in the cerebral microcirculation.
- Modeling approach for the cerebral hemodynamics during AF Anselmino et al., Sci. Rep., 2016; Scarsoglio et al., J. R. Soc. Interface, 2017; Scarsoglio et al., Chaos, 2017

 \Rightarrow Impact of heart rate (HR) during AF on cerebral hemodynamics

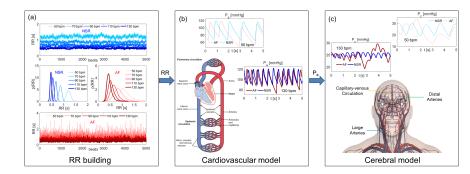

• • • • • • • • • • • • •

Methods: Computational algorithm


Stochastic RR beating extraction & validated lumped modeling;

Methods: Computational algorithm

- Stochastic RR beating extraction & validated lumped modeling;
- Mean HR = 50, 70, 90, 110, 130 bpm;


Methods: Computational algorithm

- Stochastic RR beating extraction & validated lumped modeling;
- Mean HR = 50, 70, 90, 110, 130 bpm;
- NSR (normal sinus rhythm, blue) and AF (red);

• • • • • • • • • • • • •

Methods: Computational algorithm

- Stochastic RR beating extraction & validated lumped modeling;
- Mean HR = 50, 70, 90, 110, 130 bpm;
- NSR (normal sinus rhythm, blue) and AF (red);
- 5000 cardiac cycles (RR beats) simulated for each configuration.

< < >> < </p>

 Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;

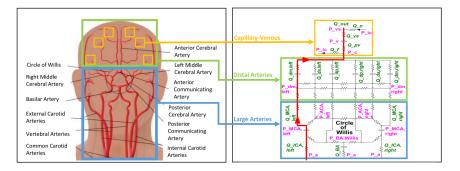
A (10) > A (10) > A

- Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;
- Lumped modeling at glance
 - Fluid dynamics variables: pressure P, volume V, flow rate Q;

< 🗇 🕨 🖌 🚍 🕨 🔸

- Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;
- Lumped modeling at glance
 - Fluid dynamics variables: pressure P, volume V, flow rate Q;
 - Network of resistances → viscosity, compliances → elasticity, inductances → inertia.

・ロト ・ 同ト ・ ヨト ・ ヨ

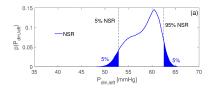

- Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;
- Lumped modeling at glance
 - Fluid dynamics variables: pressure P, volume V, flow rate Q;
 - Network of resistances → viscosity, compliances → elasticity, inductances → inertia.
 - Governing equations for each region:
 - \Rightarrow Continuity equation
 - \Rightarrow Momentum equation
 - \Rightarrow Constitutive relation between P and V

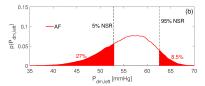
- Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;
- Lumped modeling at glance
 - Fluid dynamics variables: pressure P, volume V, flow rate Q;
 - Network of resistances \rightarrow *viscosity*, compliances \rightarrow *elasticity*, inductances \rightarrow *inertia*.
 - Governing equations for each region:
 - \Rightarrow Continuity equation
 - \Rightarrow Momentum equation
 - \Rightarrow Constitutive relation between P and V
 - Baroreceptor, autoregulation, and CO₂ reactivity mechanisms;

• • • • • • • • • • • • •

- Artificially extracted beating RR reproducing in vivo ECG ⇒ higher variability and reduced correlation in AF;
- Lumped modeling at glance
 - Fluid dynamics variables: pressure P, volume V, flow rate Q;
 - Network of resistances \rightarrow *viscosity*, compliances \rightarrow *elasticity*, inductances \rightarrow *inertia*.
 - Governing equations for each region:
 - \Rightarrow Continuity equation
 - \Rightarrow Momentum equation
 - \Rightarrow Constitutive relation between P and V
 - Baroreceptor, autoregulation, and CO₂ reactivity mechanisms;
- Focus on the proximal-to-distal pathway (left side):
 - Large arteries (*P_a*, *P_{MCA,left}*, *Q_{ICA,left}*, *Q_{MCA,left}*);
 - Distal arteries (*P*_{dm,left}, *Q*_{dm,left});
 - Capillary-venous circulation (P_c, Q_{pv}) .

Methods: RR building and lumped modeling features

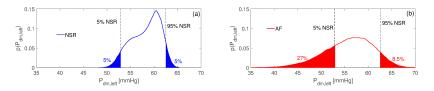

• Focus on the proximal-to-distal pathway (left side):

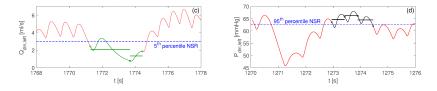

- Large arteries (*P_a*, *P_{MCA,left}*, *Q_{ICA,left}*, *Q_{MCA,left}*);
- Distal arteries (*P*_{dm,left}, *Q*_{dm,left});
- Capillary-venous circulation (*P_c*, *Q_{pv}*).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Methods: Data analysis

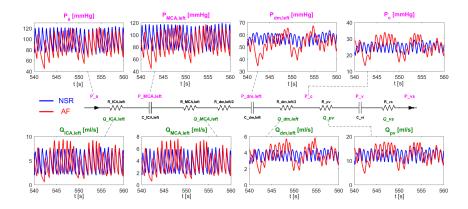
• Percentile evaluation




< □ > < 同 > < 回 > < 回

Methods: Data analysis

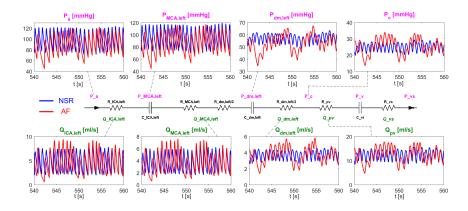
Percentile evaluation


Recurrence of extreme events (hypoperfusions and hypertensive events) in AF

S. Scarsoglio, A. Saglietto, M. Anselmino, L. Ridolfi

Heart rate response during AF on cerebral hemodynamics

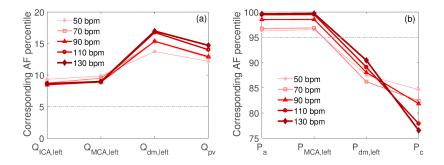
Results: proximal-to-distal pathway

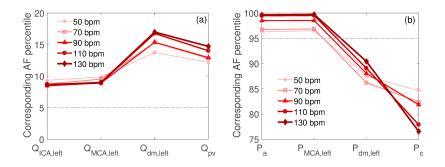


S. Scarsoglio, A. Saglietto, M. Anselmino, L. Ridolfi Heart rate response during AF on cerebral hemodynamics

→ Ξ →

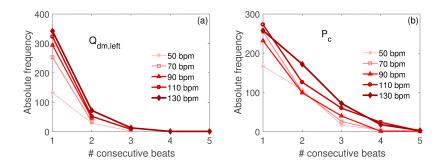
э


Results: proximal-to-distal pathway


 HR=70 bpm. Compared to NSR, AF triggers a higher variability of the cerebral hemodynamic variables, increasingly proceeding towards the distal circulation.

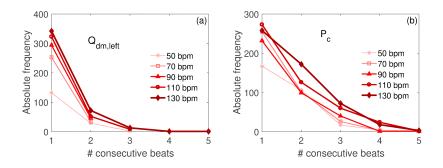
 $\exists \rightarrow$

Results: percentile analysis



Results: percentile analysis

• The increased variability during AF leads to critical hemodynamic events of reduced blood flow or excessive pressure in the deepest cerebral circulation (arterioles and capillaries).


Results: hypoperfusions and hypertensive events

S. Scarsoglio, A. Saglietto, M. Anselmino, L. Ridolfi Heart rate response during AF on cerebral hemodynamics

- + ∃ →

Results: hypoperfusions and hypertensive events

 Absolute frequency over 5000 beats of (a) hypoperfusions (*Q_{dm,left}*) and (b) hypertensive events (*P_c*) during AF.

< 同 > < ∃ >

Results: total number of one-beat extreme events

Hypoperfusions						
	Q _{ICA,left}	Q _{MCA,left}	Q _{dm,left}	Q _{pv}		
50 bpm	1	2	196	124		
70 bpm	0	0	321	136		
90 bpm	0	0	386	216		
110 bpm	0	0	451	352		
130 bpm	0	0	534	415		
Hypertensive events						
	Pa	P _{MCA,left}	P _{dm,left}	Pc		
50 bpm	0	0	231	456		
70 bpm	0	0	478	549		
90 bpm	0	0	408	559		
110 bpm	0	0	354	811		
130 bpm	0	0	285	905		

・ 同 ト ・ ヨ ト ・ ヨ

Results: total number of one-beat extreme events

Hypoperfusions						
	Q _{ICA,left}	Q _{MCA,left}	Q _{dm,left}	Q _{pv}		
50 bpm	1	2	196	124		
70 bpm	0	0	321	136		
90 bpm	0	0	386	216		
110 bpm	0	0	451	352		
130 bpm	0	0	534	415		
Hypertensive events						
	Pa	P _{MCA,left}	P _{dm,left}	Pc		
50 bpm	0	0	231	456		
70 bpm	0	0	478	549		
90 bpm	0	0	408	559		
110 bpm	0	0	354	811		
130 bpm	0	0	285	905		

• Critical events (over 5000 beats) mainly occur in the distal region (rare episodes in the proximal region) and increase with HR.

< □ > < 同 > < 回 > < 回

 The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;

< 🗇 🕨 🖌 🚍 🕨 🔸

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).

< 🗇 🕨 🖌 🚍 🕨 🔸

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).
- Role of HR during AF on cerebral hemodynamics:
 - Distal critical episodes increase with HR ⇒ no optimal HR target;

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).
- Role of HR during AF on cerebral hemodynamics:
 - Distal critical episodes increase with HR ⇒ no optimal HR target;
 - At 50 bpm possible occurrence of proximal hypoperfusions;

▲ @ ▶ ▲ ■ ▶ ▲

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).
- Role of HR during AF on cerebral hemodynamics:
 - Distal critical episodes increase with HR ⇒ no optimal HR target;
 - At 50 bpm possible occurrence of proximal hypoperfusions;
 - To overall minimize AF-induced impact ⇒ 50<HR<70 bpm;

▲ @ ▶ ▲ ■ ▶ ▲

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).
- Role of HR during AF on cerebral hemodynamics:
 - Distal critical episodes increase with HR ⇒ no optimal HR target;
 - At 50 bpm possible occurrence of proximal hypoperfusions;
 - To overall minimize AF-induced impact ⇒ 50<HR<70 bpm;
 - ⇒ Clinical findings (Cacciatore et al., Dement. Geriatr. Cogn., 2012):

worse cognitive outcomes for HR<50 bpm and HR>90 bpm.

• • • • • • • • • • • • •

- The impact of AF on cerebral microcirculation is a potential mechanism into the genesis of AF-related cognitive impairment
 - Repeated exposure to irregular and extreme values in AF promotes an alteration of the hemodynamic patterns;
 - Potential damage either due to hypoperfusions (e.g., altered brain oxygenation) or hypertensive events (e.g., hemorrhagic episodes).
- Role of HR during AF on cerebral hemodynamics:
 - Distal critical episodes increase with HR ⇒ no optimal HR target;
 - At 50 bpm possible occurrence of proximal hypoperfusions;
 - To overall minimize AF-induced impact ⇒ 50<HR<70 bpm;
 - ⇒ Clinical findings (Cacciatore et al., Dement. Geriatr. Cogn., 2012):

worse cognitive outcomes for HR<50 bpm and HR>90 bpm.

Compagnia di San Paolo is acknowledged for funding the present work within the Project CSTO160444 "*Cerebral hemodynamics during atrial fibrillation*".