

Politecnico di Torino - Turin (Italy) Aerospace Engineering Department

Characterization of turbulent channel flows:

From time-series to complex networks

Presenting Author: Giovanni Iacobello

Co-Authors: Stefania Scarsoglio, Luca Ridolfi

23/08/2017

Introduction

Data: Numerical simulations / experimental measures

Fully developed turbulent channel flow

Method: Application of complex networks to time-series

Visibility Algorithm

Aim: Novel method to analyze turbulence data

Extract non-trivial information: temporal structure

Statistical Physics + Graph Theory

Nodes + Links

•0

Statistical Physics + Graph Theory

3/11

Non-trivial topological features

Statistical Physics + Graph Theory

Nodes + Links

3/11

Successfully applied:

- Transportation
- Internet / WWW
- Biology/Medicine
- Economy
- Earth science
- Sociology
- Fluid Flows

Statistical Physics + Graph Theory

Nodes + Links

3/11

Successfully applied:

- Transportation
- Internet / WWW
- Biology/Medicine
- Economy
- Earth science
- Sociology
- Fluid Flows

Turbulence Very recently

Networks Building

Each series value \equiv a node

How are nodes linked together?

Networks Building

Each series value \equiv a node

$$s(t_k) < s(t_j) + (s(t_i) - s(t_j)) \frac{t_j - t_k}{t_j - t_i}$$

4/11

Each series value \equiv a node

$$s(t_k) < s(t_j) + (s(t_i) - s(t_j)) \frac{t_j - t_k}{t_j - t_i}$$

4/11

[2] Lacasa, L., et al. PNAS 105.13 (2008): 4972-4975.

$$s(t_k) < s(t_j) + (s(t_i) - s(t_j)) \frac{t_j - t_k}{t_j - t_i}$$

Invariant under affine transformations!

s(4)

Network Metrics

Global metrics: one value for each network

5/11

Network Metrics

Global metrics: one value for each network

Average visibility of nodes

Network Metrics

Global metrics: one value for each network

- Average Degree Centrality, k
 - Average visibility of nodes

Transitivity,
$$Tr \rightarrow Tr = \frac{3N_{\Delta}}{N_{V}}$$

• Inter-visibility among nodes

5/11

Network Metrics

Global metrics: one value for each network

- Average Degree Centrality, k
 - Average visibility of nodes

Transitivity,
$$Tr \rightarrow Tr = \frac{3N_{\Delta}}{N_V}$$

Inter-visibility among nodes

5/11

Mean Link-Length, d_{1n}

• Average temporal distance among nodes

Focus on:

- Peaks (strong variations)
 - Irregularities (small variations)

Focus on:

Peaks (strong variations)

Irregularities (small variations)

6/11

Focus on:

Irregularities (small variations)

Focus on:

Irregularities (small variations)

$$\left.\begin{array}{c} \bullet & d_{1n} \\ \bullet & Tr \end{array}\right\} k$$

$$\begin{array}{c} d_{1n}\downarrow, Tr\approx\\ \end{array}$$

Focus on:

Irregularities (small variations)

$$\left.\begin{array}{c} \bullet & d_{1n} \\ \bullet & Tr \end{array}\right\} k$$

Focus on:

Irregularities (small variations)

Data & Processing

John Hopkins Turbulence Database^[1]

- **DNS**: $Re_{\tau} = 1000$
 - Grid Resolution: $(2048 \times 512 \times 1536) \rightarrow (64 \times 70 \times 12)$
- Time samples: $N_T = 4000 \rightarrow 4000$ nodes

Data & Processing

John Hopkins Turbulence Database^[1]

- **DNS**: $Re_{\tau} = 1000$
 - Grid Resolution: $(2048 \times 512 \times 1536) \rightarrow (64 \times 70 \times 12)$
 - Time samples: $N_T = 4000 \rightarrow 4000$ nodes

Processing:

- Normalized velocity time-series: $u^* = (u \mu)/\sigma$
- A network for each grid point \rightarrow 3 values of metrics
- Metrics depend only on $y^+ \rightarrow (x z)$ averages

Data & Processing

John Hopkins Turbulence Database^[1]

- **DNS**: $Re_{\tau} = 1000$
 - Grid Resolution: $(2048 \times 512 \times 1536) \rightarrow (64 \times 70 \times 12)$
 - Time samples: $N_T = 4000 \rightarrow 4000$ nodes

Processing:

- Normalized velocity time-series: $u^* = (u \mu)/\sigma$
- A network for each grid point \rightarrow 3 values of metrics
- Metrics depend only on $y^+ \rightarrow (x z)$ averages

Results: u^*

Results: u^*

Normalized time-series – $u^*(t_i)$

Results: u^*

Normalized time-series – $u^*(t_i)$

9/11

 y^+

Results: *u*^{*}

Normalized time-series $-u^*(t_i)$

Networks inherit the temporal structure of the series

 y^+

Results

Velocity components: (u^*, v^*, w^*)

Variations of peaks and irregularities can be qualitatively inferred looking at the metrics behaviors along y^+

Conclusions

Meaningful Parameters:

- Transitivity \rightarrow irregularities
- Mean link-length \rightarrow peaks

Main Results:

- Qualitatively infer the temporal structure of the series
- Complex networks inherit the main flow dynamics

Future works:

- Deeper analysis / Different Reynolds
- Application to other turbulent flows

16TH EUROPEAN TURBULENCE CONFERENCE, 21-24 AUGUST, 2017, STOCKHOLM, SWEDEN

Thank You for Your Attention Questions?