Exploring intracranial aneurysm hemodynamics
with a complex networks approach
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Abstract—Here Complex Network theory is applied for the
first time to explore the intricate hemodynamics in intracranial
aneurysms. The exploratory analysis, carried out on an image-
based computational hemodynamics model, suggests the
formation of spatial patterns which coherently link parent
vessel fluid structures to the intricate hemodynamics within the
aneurysmal sac.
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1. INTRODUCTION
N recent years coupling medical imaging and

computational fluid dynamics (CFD) has shown promise
for informing treatment planning and rupture risk assessment
for intracranial aneurysms [1]-[5]. However, a disparity of
opinions still persists in the aneurysm CFD literature
regarding the diagnostic/therapeutic impact of computational
hemodynamics [6], [7], where robust hemodynamic indicators
of rupture risk have not yet been identified. To get more
knowledge on aneurysmal hemodynamics, here an aneurysm
case is considered, presenting high-frequency flow
instabilities [1], [3], and on it an exploratory approach is
applied, based on the complex network (CN) theory [8], [9].
CNs represent a powerful tool to explore complexity of
physical systems with a huge number of interacting elements.
Although interest in complex networks has been increasing in
the last years, no studies have been applied to cardiovascular
hemodynamics. In detail, an investigation starting from a two-
point correlation for the velocity magnitude of intracranial
aneurysm hemodynamics numerically solved is proposed. The
analysis of the degree centrality, a well-established metric for
CN characterization, suggests the formation of spatial patterns
that coherently link parent vessel fluid structures to the
intricate hemodynamics within the aneurysmal sac.

II. METHODS

A. CFD simulations

To explore the efficacy of complex networks when applied
to cardiovascular hemodynamics, an aneurysm model from
the open-source Aneurisk database (Anecurisk-Team, 2012)
was selected. The Vascular Modelling ToolKit (VMTK) was
used to generate a mesh of 1.8M P2-P1 tetrahedra and a
pulsatile simulation was performed using a second-order
accuracy, finite element CFD solver, with a temporal
resolution of 20,000 time steps per cardiac cycle [1], [3]. A
fully developed Womersley velocity profile was applied at the
inlet, and zero pressure was specified at the outlet sections.
For this CN analysis the resulting CFD data were
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downsampled to a 290k P1-P1 mesh and 2500 time steps.

B. Model Branch Splitting

To get insights into how local hemodynamics inside the
parent vessel is correlated with fluid structure in the
aneurysmal sac, the parent vessel was split into its three
branches, and the aneurysmal sac was isolated. As final result
of the splitting strategy, the main parent vessel (Branchl), its
branches (Branch2 and Branch3), and the isolated aneurysm
(Sac) were obtained.

C. Complex Networks: Definitions and Metrics

In graph theory, a CN is a network with significant patterns
of connection between its elements and topological features
that often occur when modelling real systems. A network (or
graph) is defined by a set V' = 1,...,N of nodes and a set £ of
links {i, j}. In this work, we assume that the graphs are
undirected, i.e., links have no orientation ({i, j} = {J, i}). In
addition to that, only one link can exist between each pair of
nodes. The graph is represented by the adjacency matrix:

g li.jje E 0

U lijteE
Ajelements are equal to 1 if a link does exist between nodes i
and j, and is equal to zero elsewhere.

One of the most popular CN metrics, applied to measure the
centrality of a node, is the normalized degree centrality:
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that gives the number of first neighbours of node i,
normalized to the total number of possible neighbours (N-1).

D. Application of CNs to the aneurysm hemodynamics

Velocity magnitude time histories along the cardiac cycle at
all nodes of the discretized fluid domain were considered as
obtained from the downsampled CFD simulation, and the
correlation between each pair of nodes was calculated. Then,
a correlation matrix R was created where each element R is
the Pearson correlation coefficient between velocity
magnitude time histories in nodes i and j. The correlation
matrix was used to build the network. In detail, the adjacency
matrix of eq. (1) was defined by establishing that a link
between nodes i and j does exist only if R; is greater than a
threshold value R:. In this way, the couples of nodes {i, j}
with R; > R; are represented in the adjacency matrix with 4; =
1, being 4; = 0 elsewhere. Here, we are interested in
exploring the spatial patterns of correlation in the velocity
field along the cardiac cycle. For this reason, correlation and
adjacency matrices were built up considering: (1) the
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correlation coefficients between all nodes in Branchl (R/1);
(2) the correlation coefficients between all nodes in the Sac
(R5S); (3) the correlation coefficients between nodes in
Branchl and nodes in the Sac (R'5).

Here the median of the distribution of the correlation
coefficients R***! between nodes in Branchl (Fig. 1) was
selected as threshold value R; and applied to build up the
adjacency matrices of RY*!, RSS and R'-S distributions,
respectively. The obtained adjacency matrices were used to
calculate the normalized degree centrality metric as in eq. (2),
indicating with kS the number of nodes inside the Sac
connected to the node i in Branchl, and with k%! (k55) the
number of first neighbors, inside Branchl (Sac). The CN-
based characterization of the intracranial aneurysm
hemodynamics was enriched by the calculation of the entropy
H of the normalized degree centrality 4;, defined as:

H=Y (k) o

where p(k;) is the probability of k;. The value of H provides a
lower bound for the expected degree of centrality among
velocity magnitude time histories required to represent
relationships involving dependence, as sampled from p(k).

III. RESULTS

The distributions of R?’*/, RSS and R®'*S are presented in
Fig. 1. Tt can be noticed that the distributions are all left-
skewed, and correlation are mostly positive. The median
value of the two-points correlations of velocity magnitude
time histories in the Sac region is lower than Branchl. The
median value of R*/**'was selected here as threshold value (R,
=0.928) to calculate normalized degree centrality values.
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Figure 1 - Probability density functions of R/, RS-S and R"'-S. Median
values of the distributions are also presented.

A visual inspection of the map of k'S values in the parent
vessel (Fig. 2, upper panel) highlights that the velocity
magnitude time histories with the highest number of links (in
terms of correlation) with time histories in the aneurysmal sac
are located at the outer walls of bending segments of the
parent vessel, where flow instability onset has been observed
[4]. The visualization of the map of degree centrality also
highlights the presence of a wide region of the sac where
velocity magnitude time histories are highly linked with the
velocity magnitude of nodes in the sac itself (45 map in Fig.
2, lower panel). Entropy of normalized degree centrality in
Branchl (H = 8.48) is higher than the Sac (H = 6.12). This
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can be interpreted as follows: a lower bound for the degree of
centrality is required to represent patterns of linked (i.e.,
highly correlated) velocity magnitude time histories within the
Sac than in Branchl. This is to say that the more the velocity
magnitude time histories in the nodes of the flow field are
linked (as in the Sac, with respect to Branchl), the more you
can compress its representation, with implications for flow
structures clustering and visualization purposes.

IV. CONCLUSION

Here we present for the first time the application of CN
theory to cardiovascular hemodynamics. In detail, networks
were built from spatio-temporal data following a two-point
correlation approach. High degree centrality regions
evidenced spatial patterns coherently moving, e.g., from the
parent vessel to the aneurysmal sac and in the sac and within
the sac itself. Based on present findings, the application of
CNs to intricate cardiovascular flows looks promising and
deserves additional future investigation.
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Figure 2 - upper panel: visualization (two different views) of £°/-5 in the
parent vessel; lower panel: visualization (two different views) of £%5 in the

aneurysmal sac.
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