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An initial-value problem (IVP) for arbitrary small three-dimensional vorticity
perturbations imposed on a free shear flow is considered. The viscous
perturbation equations are then combined in terms of the vorticity and velocity,
and are solved by means of a combined Laplace–Fourier transform in the
plane normal to the basic flow. The perturbations can be uniform or damped
along the mean flow direction. This treatment allows for a simplification of
the governing equations such that it is possible to observe long transients,
which can last hundreds time scales. This result would not be possible over an
acceptable lapse of time by carrying out a direct numerical integration of the
linearized Navier–Stokes equations. The exploration is done with respect to
physical inputs as the angle of obliquity, the symmetry of the perturbation,
and the streamwise damping rate. The base flow is an intermediate section of
the growing two-dimensional circular cylinder wake where the entrainment
process is still active. Two Reynolds numbers of the order of the critical
value for the onset of the first instability are considered. The early transient
evolution offers very different scenarios for which we present a summary for
particular cases. For example, for amplified perturbations, we have observed
two kinds of transients, namely (1) a monotone amplification and (2) a sequence
of growth–decrease–final growth. In the latter case, if the initial condition
is an asymmetric oblique or longitudinal perturbation, the transient clearly
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shows an initial oscillatory time scale. That increases moving downstream,
and is different from the asymptotic value. Two periodic temporal patterns
are thus present in the system. Furthermore, the more a perturbation is
longitudinally confined, the more it is amplified in time. The long-term
behavior of two-dimensional disturbances shows excellent agreement with a
recent two-dimensional spatio-temporal multiscale model analysis and with
laboratory data concerning the frequency and wave length of the parallel vortex
shedding in the cylinder wake.

1. Introduction

Recent shear flows studies [1–3] have shown the importance of the early
time dynamics, which in principle can lead to nonlinear growth long before
an exponential mode is dominant. The recognition of the existence of an
algebraic growth, due—among other reasons—to the nonorthogonality of the
eigenfunctions [4] and a possible resonance between Orr-Sommerfeld and
Squire solutions [5], recently promoted many contributions directed to study
the early-period dynamics. For fully bounded flows, works by [3, 6–10], and
for partially bounded, flows works by [11–14] can be cited. As for free-shear
flows, the attention was first aimed to obtain closed-form solutions to the
initial-value inviscid problem [15, 16] and was successful by considering
piecewise linear parallel basic flow profiles.

An interesting aspect observed in the intermediate periods is that the
maximal amplification is generally associated to oblique disturbances, that, as
a consequence, potentially can promote early transition, see, e.g., [13]. In fact,
the general picture is that the streamwise independent perturbations, which
are asymtotically stable at all Reynolds numbers, are the perturbations best
exploiting the energy transient amplification.

In this work, we consider as a prototype for free-shear flow the two-dimensional
wake past a bluff body. The wake stability has been widely studied by means
of modal analyses (e.g., [17–20]). However, in this way only the asymptotic
fate can be determined, regardless of the transient behavior and the underlying
physical cause of any instability.

In this work we adopt the velocity–vorticity formulation to evaluate the
general initial-value perturbative problem. This method was proposed by
Criminale, Drazin, and co-authors in the years 1990–2000 [2, 6, 11, 14, 16]. In
synthesis, the variables are Laplace–Fourier transformed in the plane normal
to the basic flow. Afterward, the resulting partial differential equations in time
are integrated numerically. This procedure allows for completely arbitrary
initial expansions by using a known set of functions (Schauder basis in the L2
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space) and yields the complete dynamics—the early time transients and the
asymptotic behavior (up to many hundred time scales)—for any disturbance.
The long-term dynamics would not, in fact, have been easily recovered by
using the alternative method of the direct numerical integration of the linear
equations because the integration over a range of time larger than a few dozen
basic time scales is not feasible.

The base flow model that we employ includes the wake transversal velocity
and thus the nonlinear and diffusive dynamics that are responsible for the
growth of the flow and the associated mass entrainment. We consider the first
two order terms of the analytical Navier–Stokes expansion used by Tordella
and Belan [21, 22], see Section 2.1. In particular, we consider the longitudinal
component of such an expansion solution, the problem is parameterized by x0,
the longitudinal coordinate, and the Reynolds number Re.

We use a complex wavenumber for the disturbance component aligned
with the flow so that longitudinal spatially damped waves are represented. It
should be observed that a longitudinal spatial growth could not be considered
physically admissible as an initial condition because the energy density of the
initial perturbation would be infinite. In the context of the initial-value problem
(IVP), this is an innovative feature adopted to introduce a possible spatial
evolution (damping) of the perturbative wave in the longitudinal direction. The
perturbative equations are numerically integrated by the method of lines. The
equations formulation and initial and boundary conditions are presented in
Section 2.2.

The perturbation evolution is examined for the base flow configurations
corresponding to the Reynolds numbers of 50, 100, and for a typical section,
x0 = 10, of the intermediate region of the flow where the entrainment process
is active. A comparison with a base flow far-field configuration, x0 = 50,
is also proposed. The normalized perturbation kinetic energy density is the
physical quantity on which the transient growth is observed (see Section 3.1).
To determine the temporal asymptotics of the disturbance, an equivalent of the
modal temporal growth rate is introduced (see Section 3.3).

Inthecaseoflongitudinaldisturbances,comparisonwithrecentspatio-temporal
multiscale Orr-Sommerfeld analysis [23, 24] and with laboratory experimental
data [25] is carried out, see Section 3.3. As noted, the initial conditions posed
are arbitrary. As far as the modal theory is concerned, the agreement is
excellent both for the frequency, defined as the temporal derivative of the
perturbation phase, and the temporal growth rate. It is also in quantitative
agreement with respect to the laboratory data. The experiment shows couples
of pulsation and wavelength of the cylinder vortex shedding that are close to
those yielded by the IVP analysis when the wavenumber is that where the
growth rate is maximum. Conclusions are given in Section 4.
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2. Initial-value problem

2.1. Base flow

The base flow is considered viscous and incompressible. To describe the
two-dimensional growing wake flow, an expansion solution for the Navier–Stokes
two-dimensional steady bluff body wake [21, 22] has been used. The x
coordinate is parallel to the free-stream velocity, the y coordinate is normal.
This approximated analytical Navier–Stokes solution incorporates the effects
due to the full nonlinear convection as well as the streamwise and transverse
diffusion. The solution was obtained by matching an inner Navier–Stokes
expansion in terms of the inverse of the longitudinal coordinate x (x−n/2, n =
0, 1, 2, . . .) with an outer Navier–Stokes expansion in terms of the inverse of
the distance from the body.

Here we take the first two orders (n = 0, 1) of the inner longitudinal
component of the velocity field as a first approximation of the primary flow.
In the present formulation, the near-parallel hypothesis for the base flow, at
a longitudinal position x = x0, is made. The coordinate x0 plays the role
of parameter of the steady system together with the Reynolds number. The
analytical expression for the profile of the longitudinal component is

U (y; x0, Re) = 1 − aC1x−1/2
0 e− Re

4
y2

x0 (1)

where a is related to the drag coefficient (a = 1
4 (Re/π )1/2cD(Re)) and C1

is an integration constant depending on the Reynolds number. As said in
the introduction, this two-term representation is extracted from an analytical
asymptotic expansion where the velocity vector and the pressure are determined
to the fourth order. It should be observed that the tranversal velocity component
V first appears at the third order (n = 2), while the pressure only at the fourth
order (n = 3). Up to the second order, the field is thus parallel. Beyond the
second order the analytical expression becomes much more complex, special
functions as the confluent hypergeometric functions play a role associated to
the deviation from parallelism [22]. By changing the x0 values, the base flow
profile (1) will locally approximate the behavior of the actual wake generated
by the body. Here, the region considered, if not otherwise specified, is fixed to
a typical section, x0 = 10 D (where D is the spatial scale of the wake) of the
intermediate wake. The term intermediate is used in the general sense as used
by [26]: “intermediate asymptotics are self-similar or near-similar solutions of
general problems, valid for times, and distances from boundaries, large enough
for the influence of the fine details of the initial/or boundary conditions to
disappear, but small enough that the system is far from the ultimate equilibrium
state . . . .” The distance beyond which the intermediate region is assumed to
begin varies from eight to four diameters D for Re ∈ [20, 40] (see [21, 22]).
Base flow configurations corresponding to a Re of 50, 100 are considered. In
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Figure 1. Wake schematic. Profile Uf (y; x0, Re) in the intermediate (x0 = 10) and far (x0 =
50) wake for different Reynolds numbers, Uf is the free stream velocity. The diameter of the
cylinder is out of scale (three times) with respect to the wake profiles.

Figure 1, a representation of the wake profile at differing longitudinal stations is
shown.

2.2. Formulation

By exciting the base flow with small arbitrary three-dimensional perturbations,
the continuity and Navier–Stokes equations that describe the perturbed system
are

∂ ũ

∂x
+ ∂ṽ

∂y
+ ∂w̃

∂z
= 0, (2)

∂ ũ

∂t
+ U

∂ ũ

∂x
+ ṽ

∂U

∂y
+ ∂ p̃

∂x
= 1

Re
∇2ũ, (3)

∂ṽ

∂t
+ U

∂ṽ

∂x
+ ∂ p̃

∂y
= 1

Re
∇2ṽ, (4)

∂w̃

∂t
+ U

∂w̃

∂x
+ ∂ p̃

∂z
= 1

Re
∇2w̃, (5)

where (ũ(x, y, z, t), ṽ(x, y, z, t), w̃(x, y, z, t)), and p̃(x, y, z, t) are the
perturbation velocity components and pressure, respectively. The independent
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spatial variables z and y are defined from −∞ to +∞, while x is defined in the
semispace occupied by the wake, from 0 to +∞. All physical quantities are
normalized with respect to the free-stream velocity Uf , the body scale D, and
the density. By combining equations (3) to (5) to eliminate the pressure, the
linearized equations describing the perturbation dynamics become(

∂

∂t
+ U

∂

∂x

)
∇2ṽ − ∂ṽ

∂x

d2U

dy2
= 1

Re
∇4ṽ, (6)

(
∂

∂t
+ U

∂

∂x

)
ω̃y + ∂ṽ

∂z

dU

dy
= 1

Re
∇2ω̃y, (7)

where ω̃y is the transversal component of the perturbation vorticity field. By
introducing the quantity �̃, that is defined by

∇2ṽ = �̃, (8)

we obtain three coupled equations: (6), (7), and (8). Equations (6) and (7)
are the Orr-Sommerfeld and Squire equations, respectively, from the classical
linear stability analysis for three-dimensional disturbances. From kinematics,
the relation

�̃ = ∂ω̃z

∂x
− ∂ω̃x

∂z
(9)

physically links together the perturbation vorticity components in the x and
z directions (ω̃x and ω̃z , respectively) and the perturbed velocity field. By
combining Equations (6) and (8) then

∂�̃

∂t
+ U

∂�̃

∂x
− ∂ṽ

∂x

d2U

dy2
= 1

Re
∇2�̃, (10)

which, together with (7) and (8), fully describes the perturbed system in
terms of vorticity. This formulation is a classical one. Alternative classical
formulations, as the velocity–pressure one, are in common use. We chose
this formulation because the vorticity transport and diffusion is the principal
phenomenolgy for the dynamics of a wake system. For piecewise linear
profiles for U , analytical solutions can be found. For continuous profiles, the
governing perturbative equations cannot be analytically solved in general, but
may assume a reduced form in the free-shear case [27].

Moreover, from the equations (7), (8), and (10), it is clear that the interaction
of the mean vorticity in z-direction (�z = −dU/dy) with the perturbation
strain rates in x and z directions ( ∂ṽ

∂x and ∂ṽ
∂z , respectively) proves to be a major

source of any perturbation vorticity production.
The perturbation quantities are Laplace and Fourier decomposed in the x

and z directions, respectively. A complex wavenumber, α = αr + iαi , along
the x coordinate as well as a real wavenumber γ along the z coordinate are
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introduced. To have a finite perturbation kinetic energy, the imaginary part αi

of the complex longitudinal wavenumber can only assume nonnegative values.
In so doing, we allow for perturbative waves that can spatially decay (αi > 0) or
remain constant in amplitude (αi = 0). The perturbation quantities (ṽ, �̃, ω̃y)
involved in the system dynamics are now indicated as (v̂, �̂, ω̂y), where

ĝ(y, t ; α, γ ) =
∫ +∞

−∞

∫ +∞

0
g̃(x, y, z, t)e−iαx−iγ z dx dz (11)

indicates the Laplace–Fourier transform of a general dependent variable in the
α − γ phase space and in the remaining independent variables y and t. The
governing partial differential equations are

∂2v̂

∂y2
− (

k2 − α2
i + 2ik cos(φ)αi

)
v̂ = �̂, (12)

∂�̂

∂t
= − (ik cos(φ) − αi )U �̂ + (ik cos(φ) − αi )

d2U

dy2
v̂

+ 1

Re

[
∂2�̂

∂y2
− (

k2 − α2
i + 2ik cos(φ)αi

)
�̂

]
,

(13)

∂ω̂y

∂t
= −(ik cos(φ) − αi )U ω̂y − ik sin(φ)

dU

dy
v̂

+ 1

Re

[
∂2ω̂y

∂y2
− (

k2 − α2
i + 2ik cos(φ)αi

)
ω̂y

]
,

(14)

where φ = tan−1(γ /αr ) is the angle of obliquity with respect to the x − y
physical plane, k = √

α2
r + γ 2 is the polar wavenumber, and αr = k cos(φ), γ =

k sin(φ) are the wavenumbers in x and z directions, respectively. The imaginary
part αi of the complex longitudinal wavenumber represents the spatial damping
rate in the streamwise direction. In Figure 2, the three-dimensional perturbative
geometry scheme is depicted.

From Equations (12)–(14), it can be noted that there can neither be advection
nor production of vorticity in the lateral free stream. The vorticity can only be
diffused because only the diffusive terms remains in the limit when y → ∞.
Perturbation vorticity vanishes in the free stream, regardless if it is initially
inserted there (if inserted, vorticity is finally dissipated in time when y → ∞).
This means that the velocity field is harmonic as y → ∞.

Governing Equations (12)–(14) need proper initial and boundary conditions
to be solved. Among all solutions, those whose perturbation velocity field is
bounded in the free stream are sought. Periodic initial conditions for

�̂ = ∂2v̂

∂y2
− (

k2 − α2
i + 2ik cos(φ)αi

)
v̂ (15)
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Figure 2. Perturbation geometry scheme.

can be cast in terms of a set of functions in the L2 Hilbert space, as

v̂(0, y) = e−(y−y0)2
cos(n0(y − y0)) or v̂(0, y) = e−(y−y0)2

sin(n0(y − y0)),

for the symmetric and the asymmetric perturbations, respectively. Parameter
n0 is an oscillatory parameter for the shape function, while y0 is a parameter
that controls the distribution of the perturbation along y (by moving away, or
bringing nearer, the perturbation maxima from the axis of the wake). The
trigonometrical system is a Schauder basis in each space L p[0, 1], for 1 < p <

∞. More specifically, the system (1, sin(n0 y), cos(n0 y), . . .) , where n0 =
1, 2, . . . , is the Schauder basis for the space of square-integrable periodic
functions with period 2π . This means that any element of the space L2,
where the dependent variables are defined, can be written as an infinite linear
combination of the elements of the basis.

The transversal vorticity ω̂y is chosen initially equal to zero throughout the
y domain to ascertain which is the net contribution of three-dimensionality on
the transversal vorticity generation and temporal evolution. However, it can be
demonstrated that the eventual introduction of an initial transversal vorticity
does not actually affect the perturbation temporal evolution.

Once initial and boundary conditions are properly set, the partial differential
Equations (12)–(14) are numerically solved by the method of lines. The spatial
derivativesarecenterdifferencedandtheresultingsystemis thenintegratedintime
by an adaptative multistep method (variable order Adams–Bashforth–Moulton
PECE solver). The transversal computational domain is a large 30-body scale.
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By enlarging the computational domain to 50- and 100-body scales, the results
vary on the third and fourth significant digit, respectively.

2.3. Measure of the growth

One of the salient aspects of the IVP is to observe the early transient evolution
of various initial conditions. To this end, a measure of the perturbation growth
can be defined through the disturbance kinetic energy density in the plane
(α, γ ) (e.g., [27, 28])

e(t ; α, γ, Re) = 1

2

1

2yd

∫ +yd

−yd

(|û|2 + |v̂|2 + |ŵ|2)dy

= 1

2

1

2yd

1

|α2 + γ 2|
∫ +yd

−yd

(∣∣∣∣∂v̂

∂y

∣∣∣∣
2

+ |α2 + γ 2||v̂|2 + |ω̂y|2
)

dy,

(16)
where 2yd is the extension of the spatial numerical domain. The value yd is
defined so that the numerical solutions are insensitive to further extensions
of the computational domain size. Here, we take yd = 15. The total kinetic
energy can be obtained by integrating the energy density over all αr and γ .
The amplification factor G(t) can be introduced in terms of the normalized
energy density

G(t ; α, γ ) = e(t ; α, γ )

e(t = 0; α, γ )
. (17)

This quantity can effectively measure the growth of a disturbance of
wavenumbers (α, γ ) at the time t, for a given initial condition at t = 0
(Criminale et al. 1997; Lasseigne et al. 1999).

The temporal growth rate on the kinetic energy r

r (t ; α, γ ) = log|e(t ; α, γ )|
2t

, t > 0 (18)

is introduced to evaluate both the early transient as well as the asymptotic behavior
of the perturbations (here it is the first moment of the perturbation, which is
assumed to asymptotically approach an exponential growth). Computations
to evaluate the long-time asymptotics are made by integrating the equations
forward in time beyond the transient [6, 11] until the temporal growth rate r
asymptotes to a constant value (dr/dt < ε, where ε is of the order 10−4).
The angular frequency (pulsation) ω of the perturbation can be introduced by
defining a local, in space and time, time phase ϕ of the complex wave at a
fixed transversal station (for example y = 1) as

v̂(y, t ; α, γ, Re) = At (y; α, γ, Re)eiϕ(t), (19)
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and then computing the time derivative of the phase perturbation ϕ [29]

ω(t) = dϕ(t)

dt
. (20)

Because ϕ is defined as the phase variation in time of the perturbative wave, it
is reasonable to expect constant values of frequency, once the asymptotic state
is reached.

3. Results

We present a summary of the most significant transient behavior and asymptotic
fate of the three-dimensional perturbations. The temporal evolution is observed
in the intermediate asymptotic region of the wake, which is the region where
the spatial evolution is predominant. It can be demonstrated that changing the
number of oscillations n0 and the parameter y0 that controls the perturbation
distribution along the y direction can only extend or shorten the duration of
the transient, while the ultimate state is not altered. More specifically, if the
perturbation oscillates rapidly or is concentrated mainly outside the shear region
of the basic flow, for a stable configuration, the final damping is accelerated
while, for an unstable configuration, the asymptotic growth is delayed. Thus,
these two parameters are not crucial, because their influence can be recognized
a priori. Therefore, in the following we use the two reference values, n0 = 1
and y0 = 0, and focus the attention mainly on parameters such as the obliquity,
the symmetry, the value of the polar wavenumber, and the spatial damping rate
of the disturbance. In particular, the polar wavenumber k changes in a range of
values reaching at maximum the order of magnitude O(1), according to what
is suggested by recent modal analyses [23, 24]. The order of magnitude of the
spatial damping rate αi varies around the polar wavenumber value.

3.1. Exploratory analysis of the transient dynamics

Figure 3 takes into account the influence, on the early time behavior, of the
perturbation symmetry and of the wake region considered in the analysis,
which is represented by the parameter x0. All the configurations considered are
asymptotically amplified, but the transients are different. The asymmetric cases
(a) present, for both the intermediate position x0 = 10 (solid curve) and the far
field position x0 = 50 (dashed curve), two temporal evolutions. For x0 = 10,
a local maximum, followed by a minimum, is visible in the energy density,
then the perturbation is slowly amplifying and the transient can be considered
extinguished only after hundreds of time scales. For x0 = 50, these features
are less marked. It can be noted that the far-field configuration (x0 = 50) has a
faster growth than the intermediate-field configuration (x0 = 10) up to t = 400.
Beyond this instant, the growth related to the intermediate configuration will
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Figure 3. Effect of the symmetry of the perturbation. (a) and (b): The amplification factor G,
and (c) and (d) the perturbation vorticity components at y = 1 as a function of time. (a)–(c)
asymmetric initial condition, (b)–(d) symmetric initial condition. Intermediate (x0 = 10, solid
curves) and far field (x0 = 50, dashed curves) wake configurations. The periods τ inter, τ far are
the periods of the modulation visible on G, in the intermediate and far field, respectively. The
values of the vorticity component in part (d) have no physical meaning. The plot simply
shows that, on the contrary of the asymmetric case in part (c), the symmetric disturbance
growth has a short transient after which it becomes homogeneous in time.

prevail on that of the far-field configuration. In the symmetric cases (b), the
growths become monotone after few time scales (t = 20) and the perturbations
quickly reach their asymptotic states (around t = 50). The intermediate field
configuration (x0 = 10, solid curve) is always growing faster than the far field
configuration (x0 = 50, dashed curve). This particular case shows a behavior
that is generally observed in this analysis, that is, asymmetric conditions lead
to transient evolutions that last longer than the corresponding symmetric ones,
and demonstrates that the transient growth for a longitudinal station in the far
wake can be faster than in the intermediate wake. It should be noted that, even
if the asymmetric perturbation leads to a much slower transient growth than
that observed for the symmetric case, the growth rate becomes equal when the
asymptotic states are reached (see for example Figure 9). The temporal window
shown in Figure 3 (t = 500) does not yet capture the asymptotic state of the



164 S. Scarsoglio et al.

asymmetric input. However, we observed that further in time the amplification
factor G reaches the same order of magnitude of the symmetric perturbation.

The more noticeable results presented in Figure 3 are that the asymmetric
growths in the early transient are much less rapid than the symmetric ones and
that the function G, in the case of asymmetric perturbations only, shows a
modulation, which is very evident in the first part of the transient, and which
corresponds to a modulation in amplitude of the pulsation of the instability
wave, see Figure 4. In fact, the pulsation varies: in the early transient it
oscillates around a mean value with a regular period, which is the same visible
on G, and with an amplitude which is growing until this value jumps to a
new value around which oscillates in a damped way. This second value is
the asymptotic constant value. This behavior is always observed in the case
of asymmetric longitudinal or oblique instability waves. Instead, it is not
shown by transversal (φ = π/2) waves or by symmetric waves, see Figure 4,
where, on the one hand, the asymptotic value, nearly equal to that of the
asymmetric perturbation, is rapidly reached after a short monotone growth
and where, on the other, the growth is many orders of magnitude faster, and
as a consequence, a modulation would not be easily observable. Thus, we
may comment here on the fact that two time scales are observed in the
transient and long-term behavior of longitudinal and oblique perturbations:
namely, the periodicity associated to the average value of the pulsation in
the early transient, clearly visible in the asymmetric case only, and the final
asymptotic pulsation. The asymptotic value of the pulsation is higher than the
initial one, typically is about 2.5 times higher. The period of the frequency
modulation of the energy density G is larger, nearly (1.4–1.7) higher, than the

Figure 4. Pulsation behavior. The wave parameters are those shown in the previous figure,
for x0 = 10.
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average period of the oscillating wave in the early transient, because G is a
square norm of the system solution. Thus, the evolution of the system exhibits
two periodic patterns at different frequencies: the first, of transient nature,
and the other of asymptotic nature. When the average damping of the energy
density in the early transient is not strong and is then followed by a monotone
asymptotic growth, the change of the frequency of the oscillation is evident, see
Figure 4.

This kind of behavior is often observed in the study of linear systems
with an oscillating norm, a problem that naturally arises in the context of
the linearized formulation of convection-dominated systems over finite length
domains. The occurrence of oscillating patterns in the energy evolution of the
solutions is linked to the nonnormal character of the linear operator, which
describes the system (e.g., [30]).

Figure 5 illustrates an interesting comparison between two- and
three-dimensional waves (note that a logarithmic scale on the ordinate is used

Figure 5. Effect of the angle of obliquity φ. (a) The amplification factor G and (b) the
temporal growth rate r as functions of time. Asymmetric initial condition, φ = 0 (solid
curves), φ = π/2 (dashed curves). (c) and (d) the perturbation vorticity components as
functions of time at y = 1, (c) φ = 0 and (d) φ = π/2. The periods τ inter is the period of the
modulation visible on G, in the intermediate field.



166 S. Scarsoglio et al.

in Figure 5(a)). The purely two-dimensional wave (solid curve) is rapidly
reaching a first maximum of amplitude (at about t = 15), then the perturbation
decreases while oscillating and reaches a minimum around t = 150. Afterwards,
the disturbance slowly grows up to t ≈ 300, where an inflection point of
the amplification factor G occurs. It should be noted that this behavior is
controlled solely by the evolution of the ωz , i.e., by the vorticity component
present in the basic flow only. Then, the growth becomes faster and the
perturbation is highly amplified in time. The purely orthogonal perturbation
(dashed curve) is instead immediately amplified. The trend is monotone, and
does not present visible fluctuations in time. The initial growth is actually rapid
and an inflection point of the amplification factor G can be found around t =
50. Beyond this point, the growth changes its velocity and becomes slower,
but still destabilizing. Both cases have asymmetric initial conditions and are
ultimately amplified. In agreement with Squire theorem, the two-dimensional
case turns out to be more unstable than the three-dimensional one, as the
two-dimensional asymptotically established exponential growth is more rapid
than the three-dimensional one (see solid and dashed curves in Figure 5(a)
for t > 400). However, it should be noted that, for an extended part of the
transient (up to about t ≈ 380), the three-dimensional perturbation presents a
larger growth than the two-dimensional one.

Figure 6 demonstrates that purely orthogonal three-dimensional unstable
perturbations may become damped by increasing their wavenumber (k = γ ).
In the case displayed in this figure, this happens when the wavenumber is
increased beyond the value 1. Before the asymptotic stable states are reached,
these configurations yield maxima of the energy density (e.g., when k = 1.5,
G ∼ 3 at t ∼ 30) in the transients. This trend is also typical of oblique
and longitudinal waves, and it can be considered a universal feature in the
context of the stability of near-parallel shear flows. It should be noted that, in
Figure 6, the perturbation is symmetric and again the amplitude modulation

Figure 6. Effect of the polar wavenumber k. (a) The amplification factor G and (b) the
temporal growth rate r as function of time. Symmetric initial condition, k = 0.5, 1, 1.5, 2.
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Figure 7. Effect of the spatial damping rate αi . (a) The amplification factor G as function of
time and (b) the wave spatial evolution in the x direction for k = αr = 0.5. Asymmetric initial
condition, αi = 0, 0.01, 0.05, 0.1.

is not observed in the early transient, even in the asymptotically stable
situations. However, this example of transient behavior also contains a feature
that is specific of orthogonal, both amplified or damped, and symmetric or
asymmetric, perturbations, namely, the fact the most amplified component of
the vorticity is the ωy , see also Figure 5(d).

In Figure 7(a), significant phenomenon is observed for a longitudinal wave.
By changing the order of magnitude of αi , it can be seen that perturbations that
are more rapidly damped in space (see, in Figure 7(b), the longitudinal spatial
evolution of the wave) yield a faster growth in time. In fact, for nearly uniform
waves in x direction (αi → 0), the configurations are asymptotically damped in
time, while for increasing values of the spatial damping rate the perturbations
are amplified in time (note that a logarithmic scale is used on part (a) of the
figure). A possible general explanation is that the introduction in a physical
system of a spatial concentration of kinetic energy is always destabilizing,
hence the higher is the disturbance concentration, the faster is the growth factor.

3.2. Physical interpretation of the different growth rate of symmetric and
asymmetric disturbances

The dramatically increased growth rate of the symmetric mode with respect to
the asymmetric mode can be understood from the induced velocity of the
vorticity field. For simplicity, imagine that the wake consists of two parallel
shear layers of opposite vorticity, as shown in Figure 8(a). Further, assume
that the vorticity is discretized into a finite number of identical vortices.
Suppose the upper shear layer is perturbed into a sinusoidal shape, as shown in
Figure 8(b). The induced velocity at the crest of the sinusoid at point 1 due
to the other vortices in the upper shear layer alone is up and to the right
as indicated by the arrow, corresponding to the classical Kelvin–Helmholtz
instability.
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Figure 8. Induced velocity field of the symmetric and asymmetric modes. (a): Idealization of
the base flow of the wake into two shear layers of opposite sign. (b): Perturbed upper shear
layer. (c): Induced velocities in the asymmetric mode. Note that they cancel to lowest order.
(d): Induced velocities in the symmetric mode. Superposition enhances the amplitude at both
points 1 and 2.

Now consider the asymmetric mode, so that the lower shear layer is a
sinusoid in phase with the upper one (Figure 8(c)). The induced velocity at the
crest of the lower shear layer at point 2 due to the other vortices in the lower
shear layer alone is exactly the opposite of that at point 1. Thus, the growth in
the asymmetric mode is due to only higher-order gradients in the induced
velocity field of one shear layer on the other.

In contrast, with a symmetric perturbation, the lower shear is the mirror
image of the upper. In Figure 8(d), the induced velocity at point 2 is necessarily
the mirror image of that at point 1. Both points move in concert to the right,
without the low-order velocity cancellation of the asymmetric mode. Thus, the
symmetric mode grows much faster.

This linear absolute instability takes place in the intermediate and far field
and acts as a source of excitation for the pair of steady recirculating eddies in
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the lee of the cylinder. The onset of a time periodic flow, a supercritical Hopf
bifurcation ([31, 32]), indicates that in the end the vortices are shed alternatively
from the separated streamlines above and below the cylinder forming the Von
Karman vortex street. The vortex street is the stable configuration after the
bifurcation has taken place. It has the symmetry of a traveling sinuous mode,
which indicates asymmetry up-and-down of the cylinder. Thus, it can be
observed that, also in the context of the vortex shedding, asymmetry shows
higher stability properties with respect to symmetry.

3.3. Asymptotic fate and comparison with modal analysis

Figure 9 presents a longitudinal comparison between the IVP and the asymptotic
theory results represented by the zero- order Orr-Sommerfeld problem [24] in
terms of temporal growth rate r and pulsation ω.

In Figure 9, the imaginary part αi of the complex longitudinal wavenumber
is fixed, and differing polar wavenumbers (k = αr ) are considered. For both
the symmetric and asymmetric arbitrary disturbances here considered, a good
agreement with the stability characteristics given by the multiscale near-parallel
Orr-Sommerfeld theory can be observed. However, it should be noted that
the wavenumber corresponding to the maximum growth factor in the case of
asymmetric perturbations is about 15% lower than that obtained in the case
of symmetric perturbations and that obtained by the normal-mode analysis.
When the perturbations are asymmetric, the transient is very long, of the order
of hundreds time scales. This difference can be due either to the fact that
the true asymptote was not yet reached, or to the fact that the extent of the
numerical errors in the integration of the equations is higher than that obtained

Figure 9. (a) Temporal growth rate and (b) pulsation. Comparison among the asymptotic
results obtained by the IVP analysis (circles: symmetric perturbation; triangles: asymmetric
perturbation) and the normal mode analysis (solid lines, see [24]. The asymptotic values for
the IVP analysis are determined when the condition dr/dt < ε (ε ∼ 10−4) is satisfied. For the
symmetric perturbations the asymptote was reached before 50 time scales were elapsed, for
the asymmetric perturbation the asymptote was determined after 500 time scales were elapsed.
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in the case of symmetric transients, which last only a few dozen time scales.
Note that this satisfactory agreement is observed by using arbitrary initial
conditions in terms of elements of the trigonometrical Schauder basis for the
L2 space, and not by considering as initial condition the most unstable waves
given by the Orr-Sommerfeld dispersion relation. Moreover, a maximum of
the perturbation energy (in terms of r) is found around k = 0.8 and confirmed
by both the analyses.

As shown in Figure 9, we have also contrasted our results with the
laboratory experimental results obtained in 1989 by Williamson [25], who
gave a quantitative determination of the Strouhal number and wavelength of
the vortex shedding—oblique and parallel modes—of a circular cylinder at
low Reynolds number. The comparison is quantitatively good, because it
shows that a wavenumber close to the wavenumber that theoretically has the
maximum growth rate at Re = 50 (see part a of Figure 9) has a—theoretically
deduced—frequency, which is very close to the frequency measured in the
laboratory. At this point, also the laboratory experimental uncertainty, globally
of the order of a ±10% in an accurate measurement set up, should be
introduced. The uncertainty associated to the laboratory method and to the
theoretical model (estimated through the difference between the position of the
maximum growth rate showed by the two cases of asymmetric and symmetric
perturbation) overlaps, which confirms the quality of this comparison. The
same quantitative agreement is observed also at Re = 100.

4. Conclusions

The three-dimensional stability analysis of the intermediate asymptotics of the
two-dimensional bluff-body viscous growing wake was considered as an IVP.
The velocity–vorticity formulation was used. The perturbative equations are
Laplace–Fourier transformed in the plane normal to the growing basic flow.
The Laplace transform allows for the use of a damped perturbation in the
streamwise direction as initial condition. In this regard, the introduction of
the imaginary part of the longitudinal wavenumber (the spatial damping rate)
was done to explicitly include in the perturbation, which otherwise would
have been longitudinally homogeneous, a degree of freedom associated to the
spatial evolution of the system.

An important point is that the vorticity–velocity formulation, Fourier–Laplace
transformation, allows (over a reasonable lapse of computing time) for the
following of the temporal evolution over hundred of basic flow time scales and
thus to observe very long transients. Such a limiting behavior would not have
been so easily reached by means of the direct numerical integration of the
linearized governing equations of the motion.

Two main transient scenarios have been observed in the region of the wake
where the entrainment is present, the region in between x0 = 10 diameters
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(intermediate) and x0 = 50 diameters (far field), for a Re number equal to
50 and 100. A long transient, where an initial growth smoothly levels off
and is followed either by an ultimate damping or by a slow amplification
for both oblique or two-dimensional waves, and a short transient where
the growth or the damping is monotone. The most important parameters
affecting these configurations are the angle of obliquity, the symmetry, the
polar wavenumber, and the spatial damping rate. While the symmetry of the
disturbance is remarkably influencing the transient behavior leaving inalterate
the asymptotic fate, a variation of the obliquity, of the polar wavenumber and
of the spatial damping rate can significantly change the early trend as well as
the final stability configuration. Interesting phenomena are observed. The first
one is that, in the case of asymmetric longitudinal or oblique perturbations, the
system exhibits two periodic patterns, the first, of transient nature, and the
second one of asymptotic nature. The second phenomenon is that, in the case
of an orthogonal perturbation, albeit always initially set equal to zero, the
transversal vorticity component is the vorticity component, which grows faster.
The third phenomenology is linked to the magnitude of the spatial damping
rate. Perturbations that are more rapidly damped in space lead to a larger
growth in time.

For disturbances aligned with the flow, the asymptotic behavior is shown
to be in excellent agreement with the zero-order results of spatio-temporal
multiscale model analyses and with the laboratory determined frequency and
wave length of the parallel vortex shedding at Re = 50 and 100. It should be
noted that the agreement between the IVP results and the normal mode theory
is obtained not using as initial condition, the most unstable wave given by the
Orr-Sommerfeld dispersion relation at any section of the wake, but arbitrary
initial conditions in terms of elements of the trigonometrical Schauder basis
for the L2 space.
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