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A temporal complex network-based approach is proposed as a novel formulation
to investigate turbulent mixing from a Lagrangian viewpoint. By exploiting a
spatial proximity criterion, the dynamics of a set of fluid particles is geometrized
into a time-varying weighted network. Specifically, a numerically solved turbulent
channel flow is employed as an exemplifying case. We show that the time-varying
network is able to clearly describe the particle swarm dynamics, in a parametrically
robust and computationally inexpensive way. The network formalism enables us to
straightforwardly identify transient and long-term flow regimes, the interplay between
turbulent mixing and mean flow advection and the occurrence of proximity events
among particles. Thanks to their versatility and ability to highlight significant flow
features, complex networks represent a suitable tool for Lagrangian investigations
of turbulent mixing. The present application of complex networks offers a powerful
resource for Lagrangian analysis of turbulent flows, thus providing a further step in
building bridges between turbulence research and network science.
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1. Introduction
One of the most remarkable features of turbulent flows is their ability to strongly

enhance transport and mixing processes. This outstanding property plays a crucial
role in many natural phenomena and engineering applications, ranging from chemical
reactions and combustion mechanisms (e.g. see Warnatz, Maas & Dibble 1996;
Nguyen & Papavassiliou 2018) to biophysics (Seuront & Schmitt 2004) as well as
atmospheric dispersion and geophysical phenomena (e.g. see Pasquill & Smith 1983;
Fernando 2012). In spite of many efforts, several issues regarding the understanding
and modelling of turbulent mixing – e.g. anomalous scaling of statistics and signal
intermittency – need to be addressed (Warhaft 2000; Sawford 2001; Dimotakis 2005;
Toschi & Bodenschatz 2009). The Lagrangian viewpoint of turbulent mixing – in
which the focus is on particles that are advected by the flow – has turned out to be
better suited than the Eulerian view in many cases (Falkovich, Gawdzki & Vergassola
2001; Sreenivasan & Schumacher 2010). With this aim, the time evolution of pair-
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and multi-particles has usually been explored in terms of geometrical features – such
as pairwise mean-square separation or multi-particle shape evolution – and results
are typically ensemble averaged (e.g. see Salazar & Collins 2009; Pitton et al. 2012;
Bianchi et al. 2016; Polanco et al. 2018).

In this work, turbulent mixing is investigated in a Lagrangian way by exploiting the
recent advances in complex networks, aiming to extend the level of information of
classical statistics. Differently to previous approaches, the geometrical representation
of the particle dynamics in complex networks offers a twofold tool. On the one
hand, the network topology systematically geometrizes the particle dynamics, thus
introducing a schematic and synthetic representation of the particle swarm in time.
On the other hand, the network formalism provides a robust and well-established
framework for studying non-trivial spatio-temporal dynamics of a discrete set of
interacting elements (Boccaletti et al. 2006). Here, we propose a network-based
geometrization of particle dynamics in which nodes correspond to fluid particles
and links are active by means of a spatial proximity criterion, such that the relative
position between particles at any time is enclosed in the network structure. In this
way, we obtain a time-varying network which is able to capture in a synthetic way
both transient and long-term effects of turbulent mixing, as well as the extent to
which particles interact with each other.

Network science has emerged in the last two decades as an effective technique to
study real-world complex systems (Newman 2018), and growing attention is given
to the application to turbulent flows (e.g. see Charakopoulos et al. 2014; Murugesan
& Sujith 2015; Scarsoglio, Iacobello & Ridolfi 2016; Taira, Nair & Brunton 2016;
Iacobello et al. 2018). Very recently, network-based analysis of fluid flows both in
a Eulerian and in a Lagrangian frame has also been carried out. In general, the
focus of Lagrangian approaches has been on fluid transport and coherent structure
identification, by exploiting the discrete transfer operator (Ser-Giacomi et al. 2015)
and spectral-graph procedures (Hadjighasem et al. 2016; Padberg-Gehle & Schneide
2017; Schlueter-Kuck & Dabiri 2017; Schneide et al. 2018). Specifically, the linking
criterion is usually based on a similarity measure – e.g. Euclidean distance, correlation
coefficient or Granger causality (see Donner, Hernández-García & Ser-Giacomi 2017,
for an overview) – between particle trajectories evaluated in a given time interval;
by doing so, the temporal details of particle trajectories do not explicitly emerge.
Differently, in this work the spatio-temporal evolution of particles is captured at each
time step, providing a rich and detailed time-dependent picture of turbulent mixing.
Therefore, the time-varying network formulation intrinsically highlights the temporal
development of particle dynamics due to the turbulent motion.

As a paradigm of possible applications, the proposed approach is shown for a
numerically solved turbulent channel flow. In this way, we are able to provide
physical insight into the interplay between the mean flow advection and wall-normal
turbulent mixing on particles at different times, thus highlighting the key role of the
spatial inhomogeneity.

2. Flow description and networks building

A direct numerical simulation (DNS) of a three-dimensional fully developed
incompressible turbulent channel flow was performed at frictional Reynolds number
Reτ =Huτ/ν= 950, where H is half the channel height, uτ the friction velocity and ν
the kinematic viscosity (Kuerten & Brouwers 2013). The length of the domain equals
2πH in the streamwise direction, and πH in the spanwise direction; in these two
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directions, periodic boundary conditions are applied to the velocity and the fluctuating
part of the pressure. A constant mean pressure gradient in the streamwise direction
is applied to drive the flow. The grid spacing in wall units equals 7.8 and 3.9 in the
streamwise and spanwise directions, respectively, while the maximum wall-normal
grid spacing (at the channel centre) is 7.8. The total simulation time is T+ = 15 200,
while the time step is 1t+ = 4.75, where the + superscript indicates wall unit
normalization. The T+ value was set greater than the wall-normal (Eulerian) mixing
time, T+ε , namely the integral time scale after which the Taylor dispersion analysis is
asymptotically valid (Fischer 1973). By definition, T+ε ν/u

2
τ = H2/εy (Fernando 2012),

where εy = 0.067Huτ is Elder’s vertical mixing coefficient (Elder 1959); as a result,
T+ε ≈ 14 180.

The numerical simulation is run until the statistically stationary condition of the
flow is reached. After this condition is fulfilled, particles are seeded in the fully
developed turbulent flow and tracked in time (for more simulation details, see
appendix A). At this initial time, a set of (Ny × Nz) fluid particles was arranged as
a uniformly distributed grid in the plane (y+, z+) at x+ = 0, where (x+, y+, z+) are
the streamwise, wall-normal and spanwise coordinates, respectively. Although in this
work we considered fluid tracers, inertial particles could alternatively be employed.
The time-dependent particle positions are then obtained from dx+/dt+= u(x+(t+), t+),
where x+ is the position of a tracer particle. Since the focus is on the wall-normal
mixing process, particles were grouped into Ny wall-normal levels, li, where each
level includes a spanwise row of fluid particles at the initial time, i.e. li depends only
on the y+ value of particles at t+ = 0 (e.g. figure 1a shows five levels highlighted
with different colours). In this work, we set Ny = Nz = 100, where particles closest
to the walls are located at y+ = 9.5 and the remaining ones are separated by
1y+= 2Reτ/Ny= 19, while the initial spanwise separation is 1z+= 29.85. The initial
particle grouping into levels naturally emerges here as the presence of the walls
introduces an inhomogeneous direction, y+. The proposed initial particle arrangement
is suitable to numerically represent, for example, a uniformly distributed release of
contaminant in the domain. In general, initial particle grouping can be not easily
identifiable, resulting in a non-trivial task which requires ad hoc partition techniques
(e.g. see Hadjighasem et al. 2017; Balasuriya, Ouellette & Rypina 2018).

To investigate the turbulent dispersion through the network formalism, the
interactions between fluid particles were determined based on mutual spatial proximity.
Accordingly, if two particles come sufficiently close in space during their motion, a
connection is established between them. To specify the particle proximity, we assume
that a particle i is connected to a particle j if i lies inside a reference ellipsoid
centred at j, and vice versa (by symmetry). For instance, figure 1(a) illustrates the
temporal evolution of a particle along its trajectory, and the connections with other
particles enclosed in its reference ellipsoid. The ellipsoid was geometrically anchored
to each particle location and it was chosen as reference geometry to take into account
the anisotropy of the flow. Each ellipsoid is determined by means of its semi-axes
lengths, a = (ax, ay, az), representing spatial scales of turbulent motion along each
Cartesian direction. Accordingly, if the Euclidean distance between a pair of particles
is less than ai in each direction i= x, y, z (namely they are connected), then the two
particles share turbulent length scales greater than (or equal to) ai. The choice of a
is generally a non-trivial task which depends on the specific problem under study,
such as the presence of inhomogeneities in the flow or if particles are involved in
chemical or biological process (in which specific interactions occur when particles
are sufficiently close). When characteristic scales are not known a priori, the issue of
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FIGURE 1. (Colour online) (a) Sketch of the set-up of the analysis. Particles are initially
released from a uniformly spaced grid at x+ = 0. Coloured spheres represent particles
while the ellipsoid is shaded in grey. Connections between particles are illustrated as black
lines. (b) Example of particle dynamics depicted as a contact sequence, and (c) temporal
evolution of the corresponding networks (the link thickness is proportional to its weight).
For all panels, colours from red to blue highlight different starting levels (i.e. different
initial y+ values).

setting a – namely to assess the typical length scales in the flow – can be faced, for
instance, by relying on turbulence spectra, correlation functions as well as coherent
structure identification techniques.

In this work, in order to illustrate the potential of the proposed approach, the semi-
axes of the ellipsoid were set proportional to the average pairwise distances in the
corresponding Cartesian directions. In this way, the increase of the average mutual
distance between particles with time – that is mainly due to the streamwise dispersion
and partly to the spanwise mixing – is taken into account. By indicating the average
Euclidean distance as 〈d〉, then ai(t+)=αi〈di(t+)〉, where angular brackets indicate the
average over all particle pairs, i= x, y, z and α= (αx, αy, αz) forms a set of parameters.
Although α may also explicitly depend on t+, we considered αi constant in time in
order to focus only on the temporal dependency of the semi-axes a, as retained in
〈d(t+)〉. In particular, as the simplest case, we selected α as a constant in the range
α ∈ (0, 1], so that the ellipsoid size in each Cartesian direction does not exceed the
average distance, 〈d〉 (this is crucial along y+ since particles can not exceed the inter-
wall height, 2H). As a reference case, we set α = 0.5 so that the ellipsoid size in
each Cartesian direction is equal to the average distance; however, similar results are
obtained with other α values.

Since particles follow different trajectories due to turbulent motion, the spatial
proximity approach results in a non-trivial time sequence of connections. An example
of a geometrical representation of the particle dynamics is shown in figure 1(b) as
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a contact sequence: each connection between pairs of particles (depicted as small
coloured circles) is indicated as a black arc, meaning that particles are sufficiently
close in space at that time. Therefore, we employed a complex network-based
approach to geometrically represent and investigate particle dynamics. Complex
networks are defined as graphs – namely they are made up of entities called
nodes which are interconnected by links – that show non-trivial topological features
(Boccaletti et al. 2006; Newman 2018). In this work, nodes correspond to levels, li,
i.e. spanwise groups of particles initially at the same y+. By doing so, information
of particles starting at the same wall-normal positions is enclosed in each node.
Therefore, the metrics extracted from the network increase their statistical significance
because they do not represent the dynamics of a single particle.

For any time, a weight is associated with each link between a pair of nodes (i, j),
which takes into account the total number of connections shared by particles belonging
to levels li and lj. As a result, particle dynamics is modelled by means of a time-
varying network (Barrat, Barthélemy & Vespignani 2004; Holme & Saramäki 2012),
that is a sequence of NT = T+/1t+ weight matrices, defined as

W i,j(a, λ, t+)=
∑
p∈li

∑
q∈lj

Ip,q(a, t+)K(λp,q(t+)), i, j= 1, . . . ,Ny, (2.1)

where W i,j =W j,i, and the binary indicator function Ip,q is equal to 1 if a particle p
lies inside the ellipsoid of a particle q (or vice versa) at time t+, and 0 otherwise. The
window function K is a weighting function taking into account the interaction strength,
λp,q = (λx, λy, λz)p,q, between particle pairs (p, q). In this work, λ corresponds to
the pairwise Euclidean distance (evaluated in wall units) between particles (i.e. λp,q≡

dp,q), but other similarity or distance functions can be adopted. As discussed for the
characterization of a, the choice of K is conditioned to the specific problem under
study and the corresponding aim. For instance, when K = 1 each link weight exactly
counts the total number of connections shared by particles belonging to pairs of nodes.
An example of a time-varying network for K = 1 is shown in figure 1(c): the particle
dynamics represented in figure 1(b) is geometrized into time-evolving networks, where
nodes correspond to levels and the thickness of each link is proportional to its weight.

Due to its versatility (i.e. by properly setting a, λ and K, as well as the number and
the initial arrangement of particles), the proposed time-varying network approach is a
powerful tool for turbulence analysis. In fact, the weight matrices, W i,j(t+), capture
and inherit the turbulent mixing information of particles initially located at different
y+, at time any t+. In particular, a pair of nodes that is not linked at a given time
(i.e. W i,j= 0) consists of two levels whose particles are not sufficiently close in space
(namely, a link is absent in the network topology). On the other hand, non-zero W i,j
values quantify the intensity of the connection between levels, namely the extent to
which particles are close in space. By doing so, nodes do not vary with time (i.e. they
still represent the same levels), while link weights depend on time.

Finally, it should be noted that the network-based approach recently proposed by
Padberg-Gehle & Schneide (2017) for the study of Lagrangian transport and mixing
(which follows the idea by Rypina & Pratt (2017)) can be obtained from (2.1) by
setting λ= d, ax = ay = az, K = 1 and by checking whether a pair of particles comes
sufficiently close in space at least once in the time window considered. Additionally,
equation (2.1) can be generalized by removing the dependence on a (that is, by setting
ai =∞), thus only keeping the window function K as a similarity measure between
particle pairs (e.g. as adopted in Lagrangian coherent structure approaches, see also
Hadjighasem et al. (2016), Schlueter-Kuck & Dabiri (2017), Schneide et al. (2018)).
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3. Results and discussion
In this section, we present the results of the time-varying weighted network

approach to investigate turbulent mixing. Two configurations of window function K
are explored. First, in order to show the main features of the time-varying networks
in a simple case, we set K ≡ Ku

= 1, where superscript u indicates a uniform
window function (see §§ 3.1–3.3); namely, particle interaction is unweighted (binary
representation). In this way, each connection is equally weighted, and the connection
criterion is only driven by a – i.e. the main criterion is to check if particles come
sufficiently close or not, at any time. In the second configuration (see § 3.4), we set

K ≡Kw
p,q =

(
1

dp,q + 1
−

1
Dp,q + 1

)/(
1−

1
Dp,q + 1

)
, (3.1)

where dp,q is the Euclidean distance between particles p and q, given that p and q
are connected (i.e. Ip,q = 1, see (2.1)). If the ellipsoid is centred on a particle p,
Dp,q is the distance from p and the point of intersection between the ellipsoid border
and the straight line between p and q (the same criterion holds if the ellipsoid is
centred on the particle q). In this way, the window function is bounded as Kw

∈ [0, 1],
where the ellipsoid border represent an iso-value Kw

= 0, while Kw
= 1 is obtained if

particle positions coincide (see also Hadjighasem et al. (2016), Schneide et al. (2018)
for other works following an inverse distance-based weighting function). In this case,
the anisotropy of the flow is explicitly considered as Dp,q depends on the lengths
of the ellipsoid semi-axes. By using a monotonically decreasing function for K, the
smallest spatial scales are more weighted than the largest ones. This corresponds to
the assumption that the smallest turbulent scales play a more significant role in particle
dynamics.

3.1. Network structure of particle dynamics
To show the networks from the particle dynamics, in figure 2 the weight matrices at
six characteristic times and their corresponding network topology are reported (for
further visualizations see Supplementary Movie 1 available at https://doi.org/10.1017/
jfm.2019.79). Since particles are initially arranged in a uniform grid at x+ = 0, each
level is simply connected to levels close-in-space in the (y+, z+) plane at t+ = 0,
resulting in the diagonal weight matrix of figure 2(a1). For small times, the particle
dynamics is led by an almost purely advective motion and the particle swarm takes
the shape of a bow-like surface (at the very beginning, this surface reproduces
the mean velocity profile, U(y+), in each (x+, y+) plane). Accordingly, the weight
matrix exhibits a predominant diagonal pattern, as shown in figure 2(b1). However,
wall-normal turbulent mixing enables out-of-diagonal connections, and an increasing
number of weak W i,j values between initially distant levels appears in time (e.g. levels
l10 and l75 in figure 2c1). Sufficiently far enough downstream from x+ = 0, all levels
are interconnected with each other (e.g. see figure 2d1), due to the progressively
enhanced transversal mixing. Nevertheless, the mean flow advection is still dominant
over mixing at this stage: the initial linear diagonal structure of W i,j evolves into a
three-square diagonal pattern, where the central square is bounded between y+ ≈ 500
and y+ ≈ 1400 (namely levels l27 and l74). This wall-normal coordinate corresponds
to the y+ value at which the mean shear, ∂U/∂y, sharply decreases towards zero. In
fact, while particles initially located far from the walls experience an almost zero
mean shear (thus moving downstream at a high mean velocity), particles close to
the wall tend to form two long tails due to the large mean shear close to the wall.
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FIGURE 2. (Colour online) Representation of the time-varying network as: (a1–f 1) weight
matrices, W i,j; (a2–f 2) their corresponding network topology. In panels (a1–f 1), the labels
of the matrix ordinates indicate the y+ value (relative to the closest wall, i.e. y+ ∈ [0, 950])
of the corresponding level reported in the matrix abscissas, while colours represent the
weight of the links, W i,j. Network visualizations in panels (a2–f 2) are obtained through the
OpenOrd layout algorithm (Martin et al. 2011); node colours indicate different y+ values
and range from red (i.e. level 1) to blue (i.e. level 100), while link weights are shown in
greyscale, where strong links are in black and weak links are in light grey.

The advection process makes the tails progressively stretched along the walls as time
increases, highlighting the effect of the mean shear on particle swarm. Therefore,
the three-square pattern emerges as a consequence of the mean shear on the particle
dynamics. Finally, at some time long after, turbulent mixing becomes as effective
as streamwise advection. This is first manifested as a smoothing in the three-square
pattern of W i,j (figure 2e1), and later as a random-like structure (figure 2f 1). This
final state represents the Taylor dispersion regime, in which the streamwise particle
distribution approaches a Gaussian distribution (see also Movie 2).

The temporal characterization of particle dynamics is also highlighted by a different
network topology in figure 2. For short times, the networks show a tree-like elongated
structure (figure 2a2–c2) in analogy with the diagonal pattern of the corresponding
W i,j (figure 2a1–c1). On the other hand, turbulence mixing – by enabling links
between distant levels – has the effect to induce a clustered topology, that is a
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FIGURE 3. (Colour online) (a) Total number of connections, E(t+), as a function of time.
Three regimes are highlighted and distinguished by T+a ≈ 400 and T+d ≈ 5200. The two
insets show the particle swarms in the first and third regimes, where particle colours
indicate their starting level (blue is l1, red is l100). The values of E at the same times
reported in figure 2 are also illustrated as coloured circles. (b) Effect of α on E(t+), where
Ea and Ed are the average values of E(t+) over t+<T+a and t+>T+d , respectively. Dashed
lines indicate the scalings as α2 and α3.

network geometry in which nodes tend to aggregate with each other. In fact, as
illustrated in figure 2(d2), the nodes of the network at t+ = 2327.5 tend to group
based on their wall-normal coordinate: this topology corresponds to the three-square
pattern of figure 2(d1). Finally, for large times the turbulent mixing is much more
effective and the network topology develops towards a strongly aggregated pattern
with a random-like layout (figure 2e2–f 2).

3.2. Advection–mixing regimes and network robustness
In order to highlight the richness of the information contained in the weighted
network as time evolves, we introduce a scalar metric, E≡

∑
i

∑
j W i,j/2, that is the

total number of network connections established at each time. Figure 3(a) shows the
behaviour of E as a function of t+, where we see three temporal regimes. The first
regime ranges in t+ ∈ (0, T+a ], where T+a ≈ 400 is the time scale in which particle
dynamics is primarily led by streamwise advection. Therefore, in this first regime
particles are arranged in a bow-like shape, as shown in the top inset in figure 3(a).
Since the wall-normal mixing is the main factor responsible for the activation of
distant inter-levels connections, in the first regime the total number of links is almost
unchanged and only particles initially close in space are connected with each other
(see also figure 2). As time increases, however, mixing progressively strengthens and
E(t+) decreases up to t+ ≈ 5200. In fact, if two particles are connected (i.e. each
particle lies inside the reference ellipsoid of the other one), wall-normal mixing tends
to move the two particles apart in the wall-normal direction. Accordingly, particles
tend to deviate from the bow-like profile (typical of the first regime) in the y+
direction, and they come across a region in which the particles are less dense; as
a result, in the second regime E(t+) decreases as turbulent mixing progressively
intensifies. Therefore, the second regime is an intermediate stage between an
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advection-dominant and a mixing-dominant regime. At some time long after, the
advection process and the transversal mixing are balanced and the particle dynamics
approaches the Taylor asymptotic state. Hence, the third regime is characterized by a
nearly constant value of E(t+), because the particle swarm spreads in the streamwise
and spanwise directions without showing any spatial pattern (see the bottom inset
in figure 3a). According to our analysis, this third regime starts at time T+d ≈ 5200,
corresponding to the time scale from which Taylor’s dispersion analysis can be applied
(Fernando 2012). By comparing T+d and T+ε , we found that Taylor’s analysis holds
for T+d /T+ε & 0.37 which is in excellent agreement with the value 0.4 reported in the
literature (e.g. see Fischer 1973). It is worth noting that, while T+ε (and T+d ∝ T+ε ) can
be estimated from a dimensional analysis of the conservation equation of a tracer, the
value of T+a is non-trivial. Indeed, T+a is governed by a transient dynamics in which
the magnitude of the advection and mixing terms is not easy to quantify. By means
of particle geometrization into networks, however, we are able to easily distinguish
the onset of both transient (i.e. T+a ) and long-term regimes (i.e. T+d ). It should also
be noted that the chosen time resolution (1t+ = 4.75) is sufficiently accurate for the
present analysis, as the network features smoothly evolve over time (see figure 3a).

To summarize, the network structures are directly affected over time by wall-normal
turbulent mixing or, in general, by the interplay between mixing and advection. In
particular, the effect of turbulent mixing on particle dynamics is captured by the total
number of connections, E, which is able to reveal to which extent wall-normal mixing
breaks the initial particle arrangement towards the Taylor asymptotic state.

For a fixed number of levels, Ny, the behaviour of E(t+) – and in turn of the
weighted network – basically depends on two modelling parameters: the number
of particles in each level, Nz, and the constant of proportionality, α, between the
ellipsoid semi-axes and the average pairwise Euclidean distance. Besides, the DNS
spatial resolution could affect the network structure, since a coarse spatial resolution
implies an inaccurate velocity field and, in turn, a poor particle position resolution.
However, the adopted spatial resolution is sufficient to provide a reliable particle
position evaluation (Geurts & Kuerten 2012; Kuerten & Brouwers 2013).

To assess the robustness of the proposed approach, we first performed a parametric
analysis on Nz while keeping α= 0.5. By decreasing Nz (keeping Ny = 100 constant),
the total number of particles released in the channel is reduced, thus weakening the
statistical significance of the results. However, we found that – by considering a
fraction 1/δ of the total number of particles (with δ = 2, . . . , 10) – the curve of
E(t+) scales down from the reference case shown in figure 3(a) proportionally to
1/δ2, as expected, with a relative error below 10 %. The effect of different α values,
instead, is to vary the size of the reference volume for the link activation between
particles. Hence, a higher (lower) value of α increases (decreases) the possibility that
particles connect with each other. By varying α in the range (0, 1], the curve of
E(t+) is scaled but the values of T+a and T+d do not change (as for the parametric
analysis on Nz). However, in this case, E(t+) does not scale as α3 at any time, as one
would expect, but the scaling depends on the regime. In fact, as shown in figure 3(b),
the mean value of E(t+) for t+ < T+a (namely Ea) scales as α2, because in the first
regime only a fraction of each ellipsoid is occupied by particles, resulting from the
intersection of a bow-like surface with an ellipsoidal volume. Differently, the mean
value of E(t+) for t+> T+d (i.e. Ed) scales as α3, because in the third regime particles
are spread in all directions and particles occupy the entire volume of each ellipsoid.
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FIGURE 4. (Colour online) (a) Time evolution of W i,j for six pairs of levels. Each
horizontal bar corresponds to an entry of the W i,j matrices, while link activation is
highlighted by horizontal coloured bands, where colour variations indicate the change of
the link weight over time proportionally to log10(W i,j). (b) Standard deviation, σli , of
different levels inside the ellipsoid of particles in five representative levels. The horizontal
dashed line indicates the standard deviation from a discrete uniform distribution in the
interval [1,Ny], namely σl,u ≈ 28.87.

3.3. Characterization of turbulent mixing
The investigation of E(t+) provides concise insights into the ensemble behaviour of
all levels at each time, and it enables us to distinguish different advection–mixing
regimes. Nevertheless, from the weight matrices W i,j it is possible to extract much
more detailed information. In fact – as shown in figure 2(b1–c1) where low W i,j
values appear out of the main diagonal – the key effect of mixing is to promote the
activation of links between nodes corresponding to distant levels (e.g. l1 and l100).
Since particle geometrization into the network framework is based on the spatial
proximity, the appearance of a link between two distant levels represents a peculiar
event, which is important information, for instance when particles are involved in
chemical reactions. In order to characterize such events, in figure 4(a) we show the
temporal behaviour of W i,j(t+) for six representative pairs of nodes. If we focus on
how connections between particles in the same level change over time (that is the
main diagonal of W i,j, with i= j), link activation starts as expected at the initial time
(both for levels close to the wall, l1, and at the centre, l50) and the weight decreases
towards an asymptotic average value. For the level pair (50–25) – namely particles
initially started at y+' 940 and y+' 465, respectively –, link activation starts quickly
in time, because particles belonging to l25 and l50 do not experience a strong velocity
gradient and turbulent mixing enables their connection after a short time interval. A
link between the pair (1–25), instead, appears only at t+ ≈ 570, because during the
first regime particles in l1 experience higher mean shear than particles in l25, so only
when the mixing is strong enough does a link appear between them. Unexpectedly, as
shown in figure 4(a), a link between the two furthest levels, (1–100), appears before
a link between levels (1–50). This can be explained by recalling that if particles in
the bow-like swarm are moved apart due to wall-normal mixing, they come across
a less dense region of other particles. Therefore, particles in l1 are more likely to
connect with particles in l100 than particles in level l50, because when W1,100 > 0,
particles in l50 are mainly located far downstream so that W1,50 = 0. Therefore, link
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activation strongly depends on the flow features, namely both mixing and advection,
and it reveals non-trivial results. In particular, since each node represents a set of
Nz particles, the activation of a link between two nodes takes into account all the
pairwise connections between the Nz particles in each node. By doing so, each
link captures and highlights – through its weight – ensemble information about the
dynamics of the Nz particles in each node. It is worth noting that, for simplicity,
we only explored the inter-relation between pairs of nodes, namely 2-tuples, but the
weighted networks comprise the information of all n-tuples of nodes.

Finally, we focused on how the presence of different levels inside each ellipsoid
varies over time due to the effect of mixing. In fact, any particle belonging to a level
li is connected – due to spatial proximity – with a set of other particles belonging to
different levels lj, at each time. This is illustrated in figure 1(a) where the presence of
different levels inside the ellipsoid of a reference particle is highlighted by different
particle colours. To quantify such variability at any time, we evaluated the standard
deviation, σli , of the indices, j=1, . . . ,Ny, of levels lj found inside the ellipsoids of all
particles belonging to a reference level, li. In this way, we quantify the efficiency of
mixing between different levels. In figure 4(b) we show σli as a function of time for
five representative levels, li: due to the progressive strengthening of turbulent mixing,
the values of σli generally increase with time. Specifically, since in the first regime
advection tends to move particles apart in the streamwise direction initially started at
different y+, levels close to the walls display lower values of σli because they are
unlikely to connect with other levels at higher y+ (see top inset in figure 3a). For
long times, instead, all the σli values approach the value of a uniform distribution, σl,u,
because of strong turbulent mixing. However, only levels close to the wall (i.e. l1 and
l100) show σli values above σl,u, as a consequence of their preferential connection with
very distant levels (as illustrated in figure 4a). It should also be noted that pairs of
levels at a similar distance from the wall (i.e. pairs 1–100 and 20–80) show analogous
behaviour, since they experience similar dynamics.

3.4. Time-varying network: weighting connections, Kw

The time-varying network built by equally weighting each particle connection
(i.e. K ≡ Ku

= 1) shows several remarkable features of the turbulent dispersion
over time, as well as its effect on particle dynamics. However, in order to explicitly
account for the distance between particles in a particle pair, in the present section
we show the results for a non-uniform weighting function, which monotonically
decreases with the Euclidean distance, as defined in (3.1). The ellipsoid is still used
as a spatial proximity limit for particle connections – so that particles outside each
ellipsoid are not considered since Ip,q = 0 – but now particles at smaller spacing
inside each ellipsoid are more highly weighted. It should be noted that the (binary)
structure of networks for Kw at any time is the same as shown for Ku in figure 2.
In fact, the diagonal and three-square patterns are also found for Kw in the first and
second regime, respectively, while for large times patterns do not emerge. However,
by using a non-uniform window function, the values of the link weights (i.e. the link
colours in figure 2) for the Kw case tend to be more intense along the diagonal, as
shortest connections are weighted more. In figure 5 we show four network metrics
to further characterize the time-varying weighted networks in both configurations, Ku

and Kw. The four metrics are selected in order to progressively highlight the main
network features, ranging from a local (i.e. single nodes) to a global (i.e. the entire
network) point of view: the node centrality by evaluating the strength; the node pairs
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FIGURE 5. (Colour online) Network metrics as a function of time, t+, for the two cases
of window functions, Ku (black lines) and Kw (red lines). (a) Average strength, 〈S〉; the
red ordinate axis on the right refers to the range of 〈S〉 for the Kw case. (b) Weighted
assortativity coefficient, r. (c) Average clustering coefficient, 〈C〉. (d) Average path length,
L, and number of disconnected nodes in the networks (blue dotted line). The inset in (d)
is a zoom of the decreasing behaviour of L with time. In all panels, coloured circles refer
to the times reported in figure 2, while background colours highlight the three advection–
mixing regimes (see § 3.2).

by evaluating the assortativity coefficient; the node triples by evaluating the clustering
coefficient; and the node n-tuples (of higher order) by computing all the shortest
paths.

Figure 5(a) shows the average strength,〈S(t+)〉, of the networks as a function of
time (angular brackets indicate average over all nodes). The strength of a node i in
a weighted network is defined as Si(t+) ≡

∑
j W i,j(t+), and quantifies the intensity

of the relation between node i and all other nodes (Barrat et al. 2004). In the case
Ku
= 1, 〈S〉 is related to the number of particle connections, E, as 〈S〉 = 2E/Ny. The

behaviour of 〈S(t+)〉 as a function of time for the two cases of K is essentially the
same, because (as discussed in § 3.2) the effect of turbulent dispersion on particle
dynamics is fully captured by the network structure corresponding to Ku

= 1. However,
the values of 〈S(t+)〉 for the case Ku are globally higher (approximately two orders
of magnitude) than the corresponding values for Kw (note that in figure 5a there
are two ordinate axes), as Kw ranges in the interval [0, 1]. The difference in the
temporal behaviour between the two K configurations is more evident in the first
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regime, where 〈S〉 for the Kw case (red curve in figure 5a) decreases more rapidly. In
the first regime, advection is dominant over mixing and most of the links are present
between nodes initially close in space (i.e. along the diagonal of W i,j). However, as
mentioned in § 3.2, wall-normal turbulent mixing promotes the activation of links
between initially distant nodes, as emerges from the appearance of out-of-diagonal
links in figure 2(a1–c1) and the increase of standard deviation in figure 4(b). These
out-of-diagonal links correspond to connections between particles that are distant in
space within an ellipsoid, thus corresponding to very low Kw values. In fact, if a
particle q enters inside the ellipsoid centred in a particle p at a given time (with
p and q belonging to distant initial levels), it is very likely that q is close to the
border of the ellipsoid of p (where Kw

p,q = 0). On the other hand, for the Ku case,
connections between particles either close or distant in space are equally weighted.
Therefore, the activation of distant links (i.e. out-of-diagonal points in figure 2b1–c1)
makes the values of 〈S〉 decrease faster for the Kw case than for the Ku case.

Following the concept of strength, in figure 5(b), we show the assortativity
coefficient, r(t+), which is defined as the Pearson correlation coefficient of the
strength of the nodes at the ends of each link (Boccaletti et al. 2006). A network
is named assortative (0 < r 6 1) or disassortative (−1 6 r < 0) if nodes tend to link
with other similar or dissimilar nodes (this similarity is here measured through the
strength), respectively; otherwise the network is said non-assortative (i.e. r ≈ 0). In
both K configurations, r(t+) similarly decreases from approximatively 0.8 at small
times to zero at large times. In the first regime (especially at short times) nodes are
primarily linked with other similar nodes (e.g. see figure 2a1–c1), which implies that
the networks are assortative; on the other hand, for long times, the networks lose any
pattern (e.g. see figure 2e1–f 1), thus showing a non-assortative behaviour.

Figure 5(c) shows the average clustering coefficient, 〈C(t+)〉, for the configurations
Ku (black curve) and Kw (red curve). The clustering coefficient quantifies the
probability that two randomly chosen neighbours of a node i (i.e. two nodes linked
to i) are also neighbours, thus ranging in the interval [0, 1]. It is formally defined
as Ci =N∆(i)/N3(i), where N∆(i) is the number of triangles and N3(i) is the number
of triples involving node i, respectively (Newman 2018). A weighted clustering
coefficient takes into account the interaction intensity between nodes comprising
triplets (Barrat et al. 2004). As shown in figure 5(c), 〈C〉 increases to one for both
configurations as time increases: indeed, for large times, particles are well mixed with
each other and it is very likely that nodes form triangles, namely nodes are locally
very well inter-connected. The effect of a weighted network is to enhance the local
cohesiveness especially in the first regime, thus the values of 〈C〉 are the highest in
the Kw case, for which spatial proximity plays a more significant role.

Another feature of complex network structure is the concept of shortest path,
namely the path with minimal cost between two nodes, where a path is an alternating
sequence of nodes (and edges) considered only once (Boccaletti et al. 2006). We
investigate the average path length, L(t+), that is the average of all shortest path
lengths in the network. Specifically, the average path length is L=

∑
i 6=j dG

i,j/(N
2
y −Ny),

where dG
i,j is the length (cost) of the shortest path between node i and j in a

graph G (Boccaletti et al. 2006). In this work, since the weight associated with
each link, W i,j, represents the intensity of spatial proximity between nodes, higher
W i,j implies closer distances. Accordingly, the shortest paths for the evaluation of
L(t+) are computed by using a weighting cost 〈W〉/W i,j, where 〈W〉 is the average
link weight of the networks at any time (Opsahl, Agneessens & Skvoretz 2010).
The entries of the weighted matrix, W i,j, are normalized through 〈W〉 in order to
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consider the change of W i,j range as time increases (e.g. see the colour bar ranges in
figure 2a1–f 1). Therefore, a high weight means a low cost of the path. Figure 5(d)
shows the behaviour of L as a function of t+. The networks during the first regime
are able to display high L values, since two nodes are reachable via a high-cost path.
By inspecting the values of dG

i,j we found that outliers in L for t+ ∈ [20, 50] are due
to the nodes starting very close to the walls (namely, li with i = {1, 100}). In the
first regime, nodes starting very close to the walls are disconnected from the other
nodes in the network (see blue dotted curve in figure 5d) – namely dG

1,j= dG
100,j=∞ –

because of a strong effect of mean shear on particle positions (see also figure 2(b1) or
the visualizations in Movie 1). Since disconnected nodes are conventionally excluded
from the computation of the average path length (Boccaletti et al. 2006), the peaks
in L appear when nodes 1 and 100 are linked to the other nodes, that is at t+ ≈ 25
and t+ ≈ 40, respectively. From the point of view of the network topology, the
re-attachment of the disconnected nodes implies high-cost shortest paths, as the
values of dG

i,j for nodes i = {1, 100} are two orders of magnitude larger than dG
i,j for

all the other nodes. As a consequence, very high values of L are detected. It should
be noted that, although the effect of the mean shear is evident in the first regime,
disconnected nodes are not expected for t+→ 0, as follows from the initial particle
arrangement. For long times, instead, L tends to decrease as an effect of turbulent
mixing. By comparing the two weighted configurations, Ku and Kw, the values of
L in the first two regimes are higher for the Kw case because (as mentioned for
the assortativity and the clustering coefficient) the window function highlights the
local mixing by enhancing the spatial proximity. In the third regime, instead, both K
configurations approach the same constant L value.

In conclusion, the analysis of the metrics at different network levels (from the single
node, to node pairs and triples, as well as the shortest path of variable length) of the
time-varying weighted network, is able to unveil both the main general features and
the presence of extreme cases in the particle dynamics.

4. Conclusions
The proposed Lagrangian network-based approach is exemplified by means of DNS

of a turbulent channel flow, where the dynamics of fluid particles is characterized
by a spatial proximity criterion. The resulting time-varying weighted network is
fully able to inherit the non-trivial time sequence of connections between (groups
of) particles, which emerges due to turbulent motion. Indeed, we can identify in a
straightforward way the characteristic regimes of particle dynamics, the appearance of
peculiar events (e.g. the time of first contact between initially distant levels), as well
as the intensity of wall-normal turbulent mixing (quantified by the total number of
links). Accordingly, the potential of the Lagrangian-based networks is twofold, since
the time-varying weighted network – represented by the weight matrices – captures in
a unique framework both the qualitative spatial features of the particle swarm and the
strength of turbulent mixing. The proposed complex network geometrization reveals
to be robust and frame invariant (as the Euclidean distance is used). Moreover, this
approach is computationally affordable for a typical number of tracers of the order of
104–105, and it is thus suitable for experimental techniques, such as particle tracking
velocimetry, where the number of tracers is usually of the order of 102–103 (Kim,
Hussain & Gharib 2013). Due to its versatility, particle geometrical representation into
time-varying networks can easily be extended to other flows and other tracers, such
as inertial particles or passive scalars. Based on present findings, Lagrangian-based
networks can pave the way for a systematic network-based investigation of turbulent
mixing, especially in the context of dispersion modelling.
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Appendix A. Numerical simulation details
A DNS of a three-dimensional fully developed incompressible turbulent channel

flow was performed at Reτ = 950. To this end, the continuity equation and the Navier–
Stokes (NS) equations

∇ · u= 0,
∂u
∂t
+

1
ρ
∇p= f −ω× u+ ν∇2u, (A 1a,b)

are solved. In these equations ρ and u denote mass density and velocity of the fluid,
p the total pressure, ω the vorticity and t is time. The friction Reynolds number of
the flow is kept fixed by prescribing the mean driving force per unit mass, f , in the
streamwise direction parallel to the plates. The velocity, u, satisfies no-slip conditions
at the two plates, i.e. y+ = 0 and y+ = 1900. In the other two directions, x+ and
z+, periodic boundary conditions are applied for the velocity and the fluctuating part
of the pressure. In the two periodic directions of the domain a Fourier–Galerkin
approach is applied, and in the wall-normal direction y+ a Chebyshev-tau method.
The continuity equation is exactly satisfied by using the wall-normal component of
the vorticity vector and the Laplacian of the wall-normal velocity component as
dependent variables, instead of the three velocity components. The nonlinear terms
in the Navier–Stokes equations are calculated in the physical space by fast Fourier
transform, with application of the 3/2 rule in both periodic directions. The equations
are integrated in time by a combination of a three-stage explicit Runge–Kutta method
and the Crank–Nicolson method. In the two periodic directions 768 Fourier modes are
used, while in the wall-normal direction 385 Chebyshev polynomials are employed.
The time step used in the simulation equals 0.095νu−2

τ , while the grid spacing are
1x+ = 7.8, 1y+max ≈ 7.8 (at the channel centre) and 1z+ = 3.9.

In order to extract particle trajectories, x+(t+), the equation dx+/dt+=u(x+(t+), t+),
is solved with the same explicit second-order accurate Runge–Kutta method as used
in the solution of the NS equations. The fluid velocity is interpolated to the particle
location by tri-linear interpolation. The accuracy of the numerical method has been
assessed in previous papers (Geurts & Kuerten 2012; Kuerten & Brouwers 2013).

REFERENCES

BALASURIYA, S., OUELLETTE, N. T. & RYPINA, I. I. 2018 Generalized Lagrangian coherent
structures. Physica D 372, 31–51.

BARRAT, A., BARTHÉLEMY, M. & VESPIGNANI, A. 2004 Weighted evolving networks: coupling
topology and weight dynamics. Phys. Rev. Lett. 92 (22), 228701.

BIANCHI, S., BIFERALE, L., CELANI, A. & CENCINI, M. 2016 On the evolution of particle-puffs
in turbulence. Eur. J. Mech. (B/Fluids) 55, 324–329.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
of

 T
ur

in
, o

n 
25

 F
eb

 2
01

9 
at

 1
7:

32
:5

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79

https://doi.org/10.1017/jfm.2019.79
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.79


Lagrangian network analysis of turbulent mixing 561

BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M. & HWANG, D. U. 2006 Complex networks:
structure and dynamics. Phys. Rep. 424 (4–5), 175–308.

CHARAKOPOULOS, A. K., KARAKASIDIS, T. E., PAPANICOLAOU, P. N. & LIAKOPOULOS, A. 2014
The application of complex network time series analysis in turbulent heated jets. Chaos 24
(2), 024408.

DIMOTAKIS, P. E. 2005 Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356.
DONNER, R. V., HERNÁNDEZ-GARCÍA, E. & SER-GIACOMI, E. 2017 Introduction to focus issue:

complex network perspectives on flow systems. Chaos 27 (3), 035601.
ELDER, J. W. 1959 The dispersion of marked fluid in turbulent shear flow. J. Fluid Mech. 5 (4),

544–560.
FALKOVICH, G., GAWDZKI, K. & VERGASSOLA, M. 2001 Particles and fields in fluid turbulence.

Rev. Mod. Phys. 73 (4), 913–975.
FERNANDO, H. J. S. 2012 Handbook of Environmental Fluid Dynamics, Volume Two: Systems,

Pollution, Modeling, and Measurements. CRC Press.
FISCHER, H. B. 1973 Longitudinal dispersion and turbulent mixing in open-channel flow. Annu. Rev.

Fluid Mech. 5 (1), 59–78.
GEURTS, B. J. & KUERTEN, J. G. M. 2012 Ideal stochastic forcing for the motion of particles in

large-eddy simulation extracted from direct numerical simulation of turbulent channel flow.
Phys. Fluids 24 (8), 081702.

HADJIGHASEM, A., FARAZMAND, M., BLAZEVSKI, D., FROYLAND, G. & HALLER, G. 2017 A
critical comparison of lagrangian methods for coherent structure detection. Chaos 27 (5),
053104.

HADJIGHASEM, A., KARRASCH, D., TERAMOTO, H. & HALLER, G. 2016 Spectral-clustering approach
to lagrangian vortex detection. Phys. Rev. E 93 (6), 063107.

HOLME, P. & SARAMÄKI, J. 2012 Temporal networks. Phys. Rep. 519 (3), 97–125.
IACOBELLO, G., SCARSOGLIO, S., KUERTEN, J. G. M. & RIDOLFI, L. 2018 Spatial characterization

of turbulent channel flow via complex networks. Phys. Rev. E 98 (1), 013107.
KIM, D., HUSSAIN, F. & GHARIB, M. 2013 Vortex dynamics of clapping plates. J. Fluid Mech. 714,

5–23.
KUERTEN, J. G. M. & BROUWERS, J. J. H. 2013 Lagrangian statistics of turbulent channel flow at

Reτ = 950 calculated with direct numerical simulation and Langevin models. Phys. Fluids 25
(10), 105108.

MARTIN, S., BROWN, W. M., KLAVANS, R. & BOYACK, K. W. 2011 OpenOrd: an open-source
toolbox for large graph layout. In Visualization and Data Analysis, vol. 7868, p. 786806.
International Society for Optics and Photonics.

MURUGESAN, M. & SUJITH, R. I. 2015 Combustion noise is scale-free: transition from scale-free
to order at the onset of thermoacoustic instability. J. Fluid Mech. 772, 225–245.

NEWMAN, M. 2018 Networks, 2nd edn. Oxford University Press.
NGUYEN, Q. & PAPAVASSILIOU, D. V. 2018 Scalar mixing in anisotropic turbulent flow. AIChE J.

64 (7), 2803–2815.
OPSAHL, T., AGNEESSENS, F. & SKVORETZ, J. 2010 Node centrality in weighted networks:

generalizing degree and shortest paths. Soc. Networks 32 (3), 245–251.
PADBERG-GEHLE, K. & SCHNEIDE, C. 2017 Network-based study of Lagrangian transport and

mixing. Nonlinear Process. Geophys. 24 (4), 661.
PASQUILL, F. & SMITH, F. B. 1983 Atmospheric Diffusion: Study of the Dispersion of Windborne

Material from Industrial and Other Sources. Wiley.
PITTON, E., MARCHIOLI, C., LAVEZZO, V., SOLDATI, A. & TOSCHI, F. 2012 Anisotropy in pair

dispersion of inertial particles in turbulent channel flow. Phys. Fluids 24 (7), 073305.
POLANCO, J. I., VINKOVIC, I., STELZENMULLER, N., MORDANT, N. & BOURGOIN, M. 2018

Relative dispersion of particle pairs in turbulent channel flow. Intl J. Heat Fluid Flow 71,
231–245.

RYPINA, I. I. & PRATT, L. J. 2017 Trajectory encounter volume as a diagnostic of mixing potential
in fluid flows. Nonlinear Process. Geophys. 24 (2), 189–202.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
of

 T
ur

in
, o

n 
25

 F
eb

 2
01

9 
at

 1
7:

32
:5

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.79


562 G. Iacobello, S. Scarsoglio, J. G. M. Kuerten and L. Ridolfi

SALAZAR, J. P. & COLLINS, L. R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu.
Rev. Fluid Mech. 41, 405–432.

SAWFORD, B. 2001 Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33 (1), 289–317.
SCARSOGLIO, S., IACOBELLO, G. & RIDOLFI, L. 2016 Complex networks unveiling spatial patterns

in turbulence. Intl J. Bifurcation Chaos 26 (13), 1650223.
SCHLUETER-KUCK, K. L. & DABIRI, J. O. 2017 Coherent structure colouring: identification of

coherent structures from sparse data using graph theory. J. Fluid Mech. 811, 468–486.
SCHNEIDE, C., PANDEY, A., PADBERG-GEHLE, K. & SCHUMACHER, J. 2018 Probing turbulent

superstructures in Rayleigh–Bénard convection by Lagrangian trajectory clusters. Phys. Rev.
Fluids 3 (11), 113501.

SER-GIACOMI, E., ROSSI, V., LÓPEZ, C. & HERNANDEZ-GARCIA, E. 2015 Flow networks: a
characterization of geophysical fluid transport. Chaos 25 (3), 036404.

SEURONT, L. & SCHMITT, F. G. 2004 Eulerian and Lagrangian properties of biophysical intermittency
in the ocean. Geophys. Res. Lett. 31 (3).

SREENIVASAN, K. R. & SCHUMACHER, J. 2010 Lagrangian views on turbulent mixing of passive
scalars. Phil. Trans. R. Soc. Lond A 368 (1916), 1561–1577.

TAIRA, K., NAIR, A. G. & BRUNTON, S. L. 2016 Network structure of two-dimensional decaying
isotropic turbulence. J. Fluid Mech. 795.

TOSCHI, F. & BODENSCHATZ, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev.
Fluid Mech. 41, 375–404.

WARHAFT, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203–240.
WARNATZ, J., MAAS, U. & DIBBLE, R. W. 1996 Combustion: Physical and Chemical Fundamentals,

Modeling and Simulation, Experiments, Pollutant Formation. Springer.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
of

 T
ur

in
, o

n 
25

 F
eb

 2
01

9 
at

 1
7:

32
:5

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.79

	Lagrangian network analysis of turbulent mixing
	Introduction
	Flow description and networks building
	Results and discussion
	Network structure of particle dynamics
	Advection–mixing regimes and network robustness
	Characterization of turbulent mixing
	Time-varying network: weighting connections, Kw

	Conclusions
	Acknowledgements
	Appendix A. Numerical simulation details
	References


