Lumped-parameter modeling of the cardiovascular system

Stefania Scarsoglio¹ Andrea Guala² Carlo Camporeale² Luca Ridolfi²

¹DIMEAS, Politecnico di Torino, Italy ²DIATI, Politecnico di Torino, Italy

San Giovanni Battista Hospital 18 February 2015, Torino

Present work

Motivation and Goal

 Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);

Present work

Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address the cardiovascular feedbacks which are currently poorly understood;

Present work

Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address the cardiovascular feedbacks which are currently poorly understood;
- The main cardiac parameters can all be obtained at the same time (clinical studies usually focus only on a few of them at a time) ⇒ overall good agreement with the current clinical measures;

Present work

Motivation and Goal

- Understand and quantify, through a stochastic modeling approach, the impact of paroxysmal AF on the cardiovascular system of a healthy young adult (structural remodeling effects neglected);
- AF can be analyzed without other pathologies ⇒ highlight single cause-effect relations, trying to address the cardiovascular feedbacks which are currently poorly understood;
- The main cardiac parameters can all be obtained at the same time (clinical studies usually focus only on a few of them at a time) ⇒ overall good agreement with the current clinical measures;
- Accurate **statistical analysis** of the cardiovascular dynamics, which is not easily accomplished by in vivo measurements.

Mathematical framework Cardiac cycle simulation

Cardiovascular scheme

Reconstructed physiologic and fibrillated beating

• Normal Sinus Rhythm (NSR)

- RR extracted from a correlated pink Gaussian distribution;
- Time varying (right and left) atrial elastance;

Atrial Fibrillation (AF)

- RR extracted from an exponentially modified Gaussian distribution;
- Constant (right and left) atrial elastance ⇒ No atrial kick;

Mathematical framework Cardiac cycle simulation

Real RR series (MIT Database)

< ロ > < 同 > < 回 > < 回 >

Mathematical framework Cardiac cycle simulation

Real RR series (MIT Database)

	μ [s]	σ [S]	Cv	Sex	Age
NSR 16773	1.03	0.13	0.12	М	26
NSR 18177	0.78	0.08	0.10	F	26
AF 71	0.76	0.15	0.19	/	/
AF 202	0.65	0.17	0.27	/	/

< ロ > < 同 > < 回 > < 回 >

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Left ventricle

2

イロト イヨト イヨト イヨト

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Left ventricle

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Arterial pressure: time series and statistics

P _{sas} [mmHg]	Mean	Systolic	Diastolic	Pulsatile
NSR	99.52	116.22	83.24	32.99
AF	89.12	103.66	77.24	26.42

Scarsoglio, Guala, Camporeale, Ridolfi, Med. Biol. Eng. Comput., 2014.

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Atrial pressure and volume

V _{la} [ml]	Mean	End-Systolic	End-Diastolic
NSR	56.53	64.41	55.37
AF	65.95	71.41	68.84

イロト イヨト イヨト イヨト

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Mitral and aortic flow rates

- Different backflow valve openings during AF: Mi ↓, Ao ↑;
- Peak E wave velocity does not correlate with RF.

Scarsoglio, Camporeale, Guala, Ridolfi, in preparation, 2015.

Hemodynamic parameters Systemic arterial pressure Left heart Real series analysis

Oxygen Consumption

- Bigger expense for the oxygen consumption (RPP, TTI/min, PVA/min) and decreased left ventricular efficiency (LVE) during AF;
- The major effects of AF are due to HR acceleration, being rhythm changes less impacting.

Scarsoglio, Med. Eng. & Phys., under review 2015.

Conclusions

- Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;

Conclusions

- Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Isolate single cause-effect relations, a thing which is not possible in real medical monitoring;

Conclusions

- Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Isolate single cause-effect relations, a thing which is not possible in real medical monitoring;
- Present results should be interpreted as pure consequences of AF alone and not induced by other pathologies;

Conclusions

- Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Isolate single cause-effect relations, a thing which is not possible in real medical monitoring;
- Present results should be interpreted as pure consequences of AF alone and not induced by other pathologies;
- Accurate statistical description of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;

Conclusions

Discussion and Conclusive Remarks

- Analysis of the role of acute AF on the whole cardiovascular system through a stochastic modeling:
 - Anatomical remodeling due to long-term effects and short-term regulation effects of the baroreceptor mechanism are absent;
- Isolate single cause-effect relations, a thing which is not possible in real medical monitoring;
- Present results should be interpreted as pure consequences of AF alone and not induced by other pathologies;
- Accurate **statistical description** of the cardiovascular dynamics, a task which is rarely accomplished by in vivo measurements;
- New information on hemodynamic parameters (e.g., flow rates, right ventricle dynamics), difficult to measure and almost never treated in literature.

Conclusions

Perspectives and future work

Future work can be addressed to study:

 Response to AF together with altered physical conditions (e.g., during exertion, left atrial appendage clamping, etc);

Conclusions

Perspectives and future work

Future work can be addressed to study:

- Response to AF together with **altered physical conditions** (e.g., during exertion, left atrial appendage clamping, etc);
- Combined presence of **other cardiovascular pathologies** (e.g., mitral insufficiency, hypertension, etc);

Conclusions

Perspectives and future work

Future work can be addressed to study:

- Response to AF together with **altered physical conditions** (e.g., during exertion, left atrial appendage clamping, etc);
- Combined presence of **other cardiovascular pathologies** (e.g., mitral insufficiency, hypertension, etc);
- Inclusion of the baroregulation mechanisms.

