Hydrodynamic stability and energy spectrum power-law decay of linearized perturbed systems: the 2D bluff-body wake

Stefania Scarsoglio¹ Daniela Tordella² William O. Criminale³

¹Department of Hydraulics, Politecnico di Torino ²Department of Aeronautics and Space Engineering, Politecnico di Torino ³Department of Applied Mathematics, University of Washington

Computational Science and Engineering Laboratory ETH Zurich April 6th, 2011

2

イロト イ団ト イヨト イヨト

э

• • • • • • • •

Hydrodynamic Stability

- Hydrodynamic Stability
- Power-law decay of the energy spectrum

- Hydrodynamic Stability
- Power-law decay of the energy spectrum
- 5 Conclusions

Linear stability analysis of the 2D bluff-body wake

• Stability analysis

 Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

Modal theory

Flow asymptotically stable or unstable;

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);
- Convective and absolute instability.

Linear stability analysis of the 2D bluff-body wake

Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);
- Convective and absolute instability.
- Initial-value problem
 - Temporal evolution of arbitrary disturbances;

Linear stability analysis of the 2D bluff-body wake

• Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);
- Convective and absolute instability.
- Initial-value problem
 - Temporal evolution of arbitrary disturbances;
 - Importance of the transient growth (e. g. by-pass transition);

Linear stability analysis of the 2D bluff-body wake

• Stability analysis

- Hydrodynamics stability is important in different fields (aerodynamics, oceanography, environmental sciences, etc);
- To understand the reasons for the breakdown of laminar flow;
- To predict the transition to turbulence.

Modal theory

- Flow asymptotically stable or unstable;
- Discrete spectrum (not complete for unbounded flows);
- Convective and absolute instability.

Initial-value problem

- Temporal evolution of arbitrary disturbances;
- Importance of the transient growth (e. g. by-pass transition);
- Aim to understand the cause of any possible instability in terms of the underlying physics.

Base Flow

The two-dimensional bluff-body wake

• Flow behind a circular cylinder:

-

Base Flow

The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
 - \Rightarrow Steady, incompressible and viscous;

Base Flow

The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
 - \Rightarrow Steady, incompressible and viscous;
- Approximation of 2D asymptotic Navier-Stokes expansions (Belan & Tordella, *Phys. Fluids*, 2003), 20 ≤ *Re* ≤ 100.

Base Flow

The two-dimensional bluff-body wake

- Flow behind a circular cylinder:
 - \Rightarrow Steady, incompressible and viscous;
- Approximation of 2D asymptotic Navier-Stokes expansions (Belan & Tordella, *Phys. Fluids*, 2003), 20 ≤ *Re* ≤ 100.

S. Scarsoglio CSElab, ETH Zurich

Base Flow

The two-dimensional bluff-body wake

Two-dimensional cylinder wake.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< <p>> < <p>> < <p>> <</p>

Modal Theory

 The linearized perturbative equation in terms of stream function ψ(x, y, t) is

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Be} \nabla^4 \psi$$

• Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x - \sigma_0 t)}$

4

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< □ > < □ > < □ > < □ >

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

- Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< □ > < □ > < □ > < □ >

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

- Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< □ > < □ > < □ > < □ >

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

- Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
 - $\sigma_0 = \omega_0 + ir_0$ complex frequency (ω_0 frequency, r_0 temporal growth rate);

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

- Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
 - $\sigma_0 = \omega_0 + ir_0$ complex frequency (ω_0 frequency, r_0 temporal growth rate);
- Convective instability: r₀ < 0 for all modes, s₀ < 0 for at least one mode.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< ロ > < 同 > < 回 > < 回 >

Modal Theory

$$\partial_t \nabla^2 \psi + (\partial_x \nabla^2 \Psi) \psi_y + \Psi_y \partial_x \nabla^2 \psi - (\partial_y \nabla^2 \Psi) \psi_x - \Psi_x \partial_y \nabla^2 \psi = \frac{1}{Re} \nabla^4 \psi$$

- Normal mode hypothesis $\Rightarrow \psi(x, y, t) = \varphi(x, y, t) e^{i(h_0 x \sigma_0 t)}$
 - $\varphi(x, y, t)$ complex eigenfunction;
 - $h_0 = k_0 + is_0$ complex wavenumber (k_0 wavenumber, s_0 spatial growth rate);
 - $\sigma_0 = \omega_0 + ir_0$ complex frequency (ω_0 frequency, r_0 temporal growth rate);
- Convective instability: $r_0 < 0$ for all modes, $s_0 < 0$ for at least one mode.
- Absolute instability: $r_0 > 0$, $\partial \sigma_0 / \partial h_0 = 0$ for at least one mode.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbation: Multiscale analysis for the stability of long 3D waves

• • • • • • • • • • • •

Stability analysis through multiscale approach

• Slow variables: $x_1 = \epsilon x$, $t_1 = \epsilon t$, $\epsilon = 1/Re$.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< □ > < □ > < □ > < □ >

Stability analysis through multiscale approach

- Slow variables: $x_1 = \epsilon x$, $t_1 = \epsilon t$, $\epsilon = 1/Re$.
- Hypothesis: ψ(x, y, t) and Ψ(x, y, t) are expansions in terms of ε:
 (ODE dependent on φ₀) + ε (ODE dependent on φ₀, φ₁) + O(ε²)

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Stability analysis through multiscale approach

- Slow variables: $x_1 = \epsilon x$, $t_1 = \epsilon t$, $\epsilon = 1/Re$.
- Hypothesis: ψ(x, y, t) and Ψ(x, y, t) are expansions in terms of ε:
 (ODE dependent on φ₀) + ε (ODE dependent on φ₀, φ₁) + O(ε²)
- Order zero: homogeneous Orr-Sommerfeld equation

$$\begin{split} \mathcal{A}\varphi_0 &= \sigma_0 \mathcal{B}\varphi_0 \qquad \qquad \mathcal{A} = (\partial_y^2 - h_0^2)^2 - ih_0 \operatorname{Re}[u_0(\partial_y^2 - h_0^2) - \partial_y^2 u_0] \\ \varphi_0 &\to 0, |y| \to \infty \qquad \qquad \mathcal{B} = -i\operatorname{Re}(\partial_y^2 - h_0^2) \\ \partial_y \varphi_0 \to 0, |y| \to \infty \end{split}$$

 \Rightarrow eigenfunctions φ_0 and a discrete set of eigenvalues σ_{0n} .

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Stability analysis through multiscale approach

- Slow variables: $x_1 = \epsilon x$, $t_1 = \epsilon t$, $\epsilon = 1/Re$.
- Hypothesis: ψ(x, y, t) and Ψ(x, y, t) are expansions in terms of ε:
 (ODE dependent on φ₀) + ε (ODE dependent on φ₀, φ₁) + O(ε²)
- Order zero: homogeneous Orr-Sommerfeld equation

$$\begin{split} \mathcal{A}\varphi_0 &= \sigma_0 \mathcal{B}\varphi_0 \qquad \qquad \mathcal{A} = (\partial_y^2 - h_0^2)^2 - ih_0 \operatorname{Re}[u_0(\partial_y^2 - h_0^2) - \partial_y^2 u_0] \\ \varphi_0 &\to 0, |y| \to \infty \qquad \qquad \mathcal{B} = -i\operatorname{Re}(\partial_y^2 - h_0^2) \\ \partial_y \varphi_0 \to 0, |y| \to \infty \end{split}$$

 \Rightarrow eigenfunctions φ_0 and a discrete set of eigenvalues σ_{0n} .

• First order: Non homogeneous Orr-Sommerfeld equation

$$\begin{split} \mathcal{A}\varphi_{1} &= \sigma_{0}\mathcal{B}\varphi_{1} + \mathcal{M}\varphi_{0} \quad \mathcal{M} = \begin{bmatrix} \operatorname{Re}(2h_{0}\sigma_{0} - 3h_{0}^{2}u_{0} - \partial_{y}^{2}u_{0}) + 4ih_{0}^{3} \end{bmatrix} \partial_{x_{1}} \\ \varphi_{1} &\to 0, |y| \to \infty \qquad + (\operatorname{Re}u_{0} - 4ih_{0})\partial_{x_{1}yy}^{3} - \operatorname{Re}v_{1}(\partial_{y}^{3} - h_{0}^{2}\partial_{y}) + \operatorname{Re}\partial_{y}^{2}v_{1}\partial_{y} \\ \partial_{y}\varphi_{1} \to 0, |y| \to \infty \qquad + ih_{0}\operatorname{Re}\left[u_{1}(\partial_{y}^{2} - h_{0}^{2}) - \partial_{y}^{2}u_{1}\right] + \operatorname{Re}(\partial_{y}^{2} - h_{0}^{2})\partial_{t_{1}} \end{split}$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h_{0s}, σ_{0s}) of the dispersion relation σ₀ = σ₀(x; h₀, Re) satisfy ∂σ₀/∂h₀ = 0;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

イロト イヨト イヨト イヨト

Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h_{0s}, σ_{0s}) of the dispersion relation σ₀ = σ₀(x; h₀, Re) satisfy ∂σ₀/∂h₀ = 0;

Re = 35, x = 4. Level curves, $\omega_0 = \text{const}$ (thin curves), $r_0 = \text{const}$ (thick curves).

Normal Mode Analysis

Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Perturbative hypothesis: saddle point sequence

 $Re = 35, x = 4. \omega_0(k_0, s_0), r_0(k_0, s_0).$

Normal Mode Analysis

Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Instability characteristics: saddle point sequence

S. Scarsoglio

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Global Pulsation

• Comparison between present solution (accuracy $\Delta \omega = 0.05$), Zebib's numerical study (*J. Eng. Math.*, 1987), Pier's direct numerical simulations (*J. Fluid Mech.*, 2002), Williamson's experimental results (*Phys. Fluids*, 1988).

Tordella, Scarsoglio & Belan, Phys. Fluids, 2006.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Initial-value Problem Formulation

 Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< <p>> < <p>> < <p>> <</p>

Initial-value Problem Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re)$;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Initial-value Problem Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re)$;
- Laplace-Fourier transform in x and z directions, α complex, γ real;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Initial-value Problem Formulation

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re);$
- Laplace-Fourier transform in x and z directions, α complex, γ real;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Perturbative equations

• Perturbative linearized system:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{v} - U\hat{\Gamma}) + \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma\frac{dU}{dy}\hat{v} + \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\omega}_y] \end{aligned}$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Perturbative equations

• Perturbative linearized system:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{v} - U\hat{\Gamma}) + \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma\frac{dU}{dy}\hat{v} + \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\omega}_y] \end{aligned}$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_y$ respectively, $\hat{\Gamma}$ is defined as $\tilde{\Gamma} = \partial_x \tilde{\omega}_z - \partial_z \tilde{\omega}_x$.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Perturbative equations

• Perturbative linearized system:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{v} - U\hat{\Gamma}) + \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma\frac{dU}{dy}\hat{v} + \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\omega}_y] \end{aligned}$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_y$ respectively, $\hat{\Gamma}$ is defined as $\tilde{\Gamma} = \partial_x \tilde{\omega}_z - \partial_z \tilde{\omega}_x$.

Initial conditions:

•
$$\hat{\omega}_y(0,y) = 0;$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Perturbative equations

• Perturbative linearized system:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{v} - U\hat{\Gamma}) + \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma\frac{dU}{dy}\hat{v} + \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\omega}_y] \end{aligned}$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_y$ respectively, $\hat{\Gamma}$ is defined as $\tilde{\Gamma} = \partial_x \tilde{\omega}_z - \partial_z \tilde{\omega}_x$.

Initial conditions:

•
$$\hat{\omega}_{y}(0, y) = 0;$$

• $\hat{\Gamma}(0, y) = e^{-y^{2}} \sin(y)$ or $\hat{\Gamma}(0, y) = e^{-y^{2}} \cos(y);$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< < >> < <</p>

Perturbative equations

• Perturbative linearized system:

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= (i\alpha_r - \alpha_i)(\frac{d^2 U}{dy^2}\hat{v} - U\hat{\Gamma}) + \frac{1}{Re}[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\Gamma}] \\ \frac{\partial \hat{\omega}_y}{\partial t} &= -(i\alpha_r - \alpha_i)U\hat{\omega}_y - i\gamma\frac{dU}{dy}\hat{v} + \frac{1}{Re}[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r \alpha_i)\hat{\omega}_y] \end{aligned}$$

The transversal velocity and vorticity components are \hat{v} and $\hat{\omega}_y$ respectively, $\hat{\Gamma}$ is defined as $\tilde{\Gamma} = \partial_x \tilde{\omega}_z - \partial_z \tilde{\omega}_x$.

Initial conditions:

4

•
$$\hat{\omega}_y(0,y) = 0;$$

•
$$\hat{\Gamma}(0, y) = e^{-y^2} \sin(y)$$
 or $\hat{\Gamma}(0, y) = e^{-y^2} \cos(y);$

• Boundary conditions: $(\hat{u}, \hat{v}, \hat{w}) \to 0$ as $y \to \infty$.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Measure of the Growth

• Kinetic energy density e:

$$e(t;\alpha,\gamma) = \frac{1}{2} \frac{1}{2y_d} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

= $\frac{1}{2} \frac{1}{2y_d} \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2) dy$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

• • • • • • • • • • • • •

Measure of the Growth

• Kinetic energy density e:

$$e(t;\alpha,\gamma) = \frac{1}{2} \frac{1}{2y_d} \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

= $\frac{1}{2} \frac{1}{2y_d} \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2) dy$

• Amplification factor G:

$$G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Measure of the Growth

• Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

$$r(t; lpha, \gamma) = rac{log|e(t; lpha, \gamma)|}{2t}, \quad t > 0$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< <p>> < <p>> < <p>> <</p>

Measure of the Growth

• Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

$$r(t; \alpha, \gamma) = rac{\log|e(t; \alpha, \gamma)|}{2t}, \quad t > 0$$

• Angular frequency (pulsation) ω (Whitham, 1974):

$$\omega(t; \alpha, \gamma) = \frac{d\varphi(t)}{dt}, \qquad \varphi \text{ time phase}$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Exploratory Analysis of the Transient Dynamics

Scarsoglio, Tordella & Criminale, Stud. Applied Math., 2009.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Exploratory Analysis of the Transient Dynamics

Effect of the symmetry of the perturbation

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Exploratory Analysis of the Transient Dynamics

Effect of the symmetry of the perturbation

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Exploratory Analysis of the Transient Dynamics

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Exploratory Analysis of the Transient Dynamics

Effect of the spatial damping rate (α_i) and the number of oscillations (n_0)

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< ロ > < 同・

Comparison with modal analysis and laboratory data

Angular frequency and temporal growth rate, $\alpha_i = 0.05$, $\phi = 0$, $x_0 = 10$.

Scarsoglio, Tordella & Criminale, ETC XII, 2009.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Full linear problem

• Linearized 3D equations and Laplace-Fourier transform (x, z);

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< <p>> < <p>> < <p>> <</p>

Full linear problem

- Linearized 3D equations and Laplace-Fourier transform (*x*, *z*);
- Base flow parametric in x and $Re \Rightarrow (U(y; x_0, Re), V(y; x_0, Re));$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Full linear problem

- Linearized 3D equations and Laplace-Fourier transform (x, z);
- Base flow parametric in x and $Re \Rightarrow (U(y; x_0, Re), V(y; x_0, Re));$

$$\begin{aligned} \frac{\partial^2 \hat{v}}{\partial y^2} &- (k^2 - \alpha_i^2 + 2ikcos(\phi)\alpha_i)\hat{v} = \hat{\Gamma} \\ \frac{\partial \hat{\Gamma}}{\partial t} &= G\hat{\Gamma} + H\hat{v} + K\hat{\omega}_y \\ \frac{\partial \hat{\omega}_y}{\partial t} &= L\hat{\omega}_y + M\hat{v} \end{aligned}$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< □ > < □ > < □ > < □ >

Full linear problem

- Linearized 3D equations and Laplace-Fourier transform (x, z);
- Base flow parametric in x and $Re \Rightarrow (U(y; x_0, Re), V(y; x_0, Re));$

$$\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2ik\cos(\phi)\alpha_i)\hat{v} = \hat{f}$$
$$\frac{\partial \hat{f}}{\partial t} = G\hat{f} + H\hat{v} + K\hat{\omega}_y$$
$$\frac{\partial \hat{\omega}_y}{\partial t} = L\hat{\omega}_y + M\hat{v}$$

G = G(y; x₀, k, φ, α_i, Re), and similarly H, K, L and M, are ordinary differential operators.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiple scales hypothesis

• Regular perturbation scheme, $k \ll 1$:

$$\hat{\mathbf{v}} = \hat{\mathbf{v}}_0 + k\hat{\mathbf{v}}_1 + k^2\hat{\mathbf{v}}_2 + \cdots , \hat{\mathbf{\Gamma}} = \hat{\mathbf{\Gamma}}_0 + k\hat{\mathbf{\Gamma}}_1 + k^2\hat{\mathbf{\Gamma}}_2 + \cdots , \hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \cdots .$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiple scales hypothesis

• Regular perturbation scheme, $k \ll 1$:

$$\hat{\mathbf{v}} = \hat{\mathbf{v}}_0 + k\hat{\mathbf{v}}_1 + k^2\hat{\mathbf{v}}_2 + \cdots , \hat{\mathbf{\Gamma}} = \hat{\mathbf{\Gamma}}_0 + k\hat{\mathbf{\Gamma}}_1 + k^2\hat{\mathbf{\Gamma}}_2 + \cdots , \hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \cdots .$$

• Temporal scales: t, $\tau = kt$, $T = k^2t$;

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiple scales hypothesis

• Regular perturbation scheme, $k \ll 1$:

$$\hat{\mathbf{v}} = \hat{\mathbf{v}}_0 + k\hat{\mathbf{v}}_1 + k^2\hat{\mathbf{v}}_2 + \cdots , \hat{\mathbf{\Gamma}} = \hat{\mathbf{\Gamma}}_0 + k\hat{\mathbf{\Gamma}}_1 + k^2\hat{\mathbf{\Gamma}}_2 + \cdots , \hat{\omega}_y = \hat{\omega}_{y0} + k\hat{\omega}_{y1} + k^2\hat{\omega}_{y2} + \cdots .$$

- Temporal scales: t, $\tau = kt$, $T = k^2t$;
- Spatial scales: y, Y = ky.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

• • • • • • • • • • • • •

-

Multiple scales equations up to O(k)

• Order O(1)

$$\frac{\partial^2 \hat{v}_0}{\partial y^2} + \alpha_i^2 \hat{v}_0 = \hat{\Gamma}_0$$
$$\frac{\partial \hat{\Gamma}_0}{\partial t} - G_0 \hat{\Gamma}_0 - H_0 \hat{v}_0 = 0$$
$$\frac{\partial \hat{\omega}_{y0}}{\partial t} - L_0 \hat{\omega}_{y0} = 0$$

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiple scales equations up to O(k)

• Order O(1)

$$\frac{\partial^2 \hat{v}_0}{\partial y^2} + \alpha_i^2 \hat{v}_0 = \hat{\Gamma}_0$$
$$\frac{\partial \hat{\Gamma}_0}{\partial t} - G_0 \hat{\Gamma}_0 - H_0 \hat{v}_0 = 0$$
$$\frac{\partial \hat{\omega}_{y0}}{\partial t} - L_0 \hat{\omega}_{y0} = 0$$

where $G_0 = G_0(y; x_0, \phi, \alpha_i, Re)$ and similarly for H_0 and L_0 .

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< ロ > < 同 > < 回 > < 回 >

Multiple scales equations up to O(k)

• Order O(k)

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

< ロ > < 同 > < 回 > < 回 > < 回 > <

Multiple scales equations up to O(k)

• Order O(k)

where $G_1 = G_1(y, Y; x_0, \phi, \alpha_i, Re)$ and similarly for H_1 , K_1 , L_1 and M_1 .

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiscale and full problem results Effect of α_i and k

Scarsoglio, Tordella & Criminale, Phys. Rev. E, 2010.

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Multiscale and full problem results

Effect of the symmetry of the perturbation

Normal Mode Analysis Transient and Long-Term Behavior of Small 3D Perturbations Multiscale analysis for the stability of long 3D waves

Asymptotic state

• Temporal asymptotic values of the angular frequency ω and the temporal growth rate *r*.

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

 Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;
- We consider the state that precedes the onset of instabilities
 ⇒ the system is stable but subject to small 3D perturbations:

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;
- We consider the state that precedes the onset of instabilities
 ⇒ the system is stable but subject to small 3D perturbations:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;
- We consider the state that precedes the onset of instabilities
 ⇒ the system is stable but subject to small 3D perturbations:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the exponent of the inertial range;

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;
- We consider the state that precedes the onset of instabilities
 ⇒ the system is stable but subject to small 3D perturbations:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
 - Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);

< < >> < <</p>

General Aspects and Motivation Results

Energy spectrum and linear stability analysis

- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare it with the developed turbulent state;
- We consider the state that precedes the onset of instabilities
 ⇒ the system is stable but subject to small 3D perturbations:
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the value of the exponent of the inertial range;
- The set of small 3D perturbations:
 - Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);

• Leaves aside the nonlinear interaction among the different scales.

General Aspects and Motivation Results

Spectral analysis through initial-value problem

• The perturbative evolution is ruled out by the **initial-value problem** associated to the Navier-Stokes linearized formulation;

General Aspects and Motivation Results

Spectral analysis through initial-value problem

- The perturbative evolution is ruled out by the **initial-value problem** associated to the Navier-Stokes linearized formulation;
- We propose an experimental approach based on the numerical determination of a large number of perturbations – to approximate the general perturbation solution of a Navier-Stokes field;

General Aspects and Motivation Results

Spectral analysis through initial-value problem

- The perturbative evolution is ruled out by the **initial-value problem** associated to the Navier-Stokes linearized formulation;
- We propose an experimental approach based on the numerical determination of a large number of perturbations – to approximate the general perturbation solution of a Navier-Stokes field;
- We determine the exponent of the energy spectrum of arbitrary longitudinal and transversal perturbations and we compare it with the well-known -5/3 Kolmogorov power-law scaling:

General Aspects and Motivation Results

Spectral analysis through initial-value problem

- The perturbative evolution is ruled out by the **initial-value problem** associated to the Navier-Stokes linearized formulation;
- We propose an experimental approach based on the numerical determination of a large number of perturbations – to approximate the general perturbation solution of a Navier-Stokes field;
- We determine the exponent of the energy spectrum of arbitrary longitudinal and transversal perturbations and we compare it with the well-known -5/3 Kolmogorov power-law scaling:
 - The difference is large ⇒ quantitative measure of the nonlinear interaction in spectral terms;

A ID | A A ID | A

General Aspects and Motivation Results

Spectral analysis through initial-value problem

- The perturbative evolution is ruled out by the **initial-value problem** associated to the Navier-Stokes linearized formulation;
- We propose an experimental approach based on the numerical determination of a large number of perturbations – to approximate the general perturbation solution of a Navier-Stokes field;
- We determine the exponent of the energy spectrum of arbitrary longitudinal and transversal perturbations and we compare it with the well-known -5/3 Kolmogorov power-law scaling:
 - The difference is large ⇒ quantitative measure of the nonlinear interaction in spectral terms;
 - The difference is small ⇒ higher degree of universality on the value of the exponent of the inertial range, not necessarily associated to the nonlinear interaction.

Scarsoglio & Tordella, *AFMC17*, 2010.

General Aspects and Motivation Results

Energy Spectrum

• Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:
 - $dG(t)/dt = C_s$ (= 10⁻⁴) for stable perturbations;
 - $dG(t)/dt = C_u$ (= 10⁺⁴) for unstable perturbations.

< < >> < <</p>

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:
 - $dG(t)/dt = C_s$ (= 10⁻⁴) for stable perturbations;
 - $dG(t)/dt = C_u$ (= 10⁺⁴) for unstable perturbations.
- Stable (*Re* = 30) and unstable (*Re* = 100) configurations ⇒ Far from the turbulent state;

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:
 - $dG(t)/dt = C_s$ (= 10⁻⁴) for stable perturbations;
 - $dG(t)/dt = C_u$ (= 10⁺⁴) for unstable perturbations.
- Stable (*Re* = 30) and unstable (*Re* = 100) configurations ⇒ Far from the turbulent state;
- Intermediate ($x_0 = 10$) and far ($x_0 = 50$) field configurations;

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:
 - $dG(t)/dt = C_s$ (= 10⁻⁴) for stable perturbations;
 - $dG(t)/dt = C_u$ (= 10⁺⁴) for unstable perturbations.
- Stable (*Re* = 30) and unstable (*Re* = 100) configurations ⇒ Far from the turbulent state;
- Intermediate ($x_0 = 10$) and far ($x_0 = 50$) field configurations;
- $k \in [0.5, 500]$, $\alpha_i = 0$, and $\phi = 0, \pi/4, \pi/2$;

General Aspects and Motivation Results

Energy Spectrum

- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient:
 - $dG(t)/dt = C_s$ (= 10⁻⁴) for stable perturbations;
 - $dG(t)/dt = C_u$ (= 10⁺⁴) for unstable perturbations.
- Stable (*Re* = 30) and unstable (*Re* = 100) configurations ⇒ Far from the turbulent state;
- Intermediate ($x_0 = 10$) and far ($x_0 = 50$) field configurations;
- $k \in [0.5, 500]$, $\alpha_i = 0$, and $\phi = 0, \pi/4, \pi/2$;
- Symmetric and asymmetric initial conditions.

< □ > < □ > < □ > < □ >

General Aspects and Motivation Results

Unstable configurations

Scarsoglio, De Santi & Tordella, ETC XIII, 2011.

General Aspects and Motivation Results

Unstable configurations

Scarsoglio, De Santi & Tordella, ETC XIII, 2011.

General Aspects and Motivation Results

Unstable configurations

Scarsoglio, De Santi & Tordella, ETC XIII, 2011.

General Aspects and Motivation Results

Stable configurations

General Aspects and Motivation Results

Stable configurations

General Aspects and Motivation Results

Stable configurations

Conclusions

• Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);

< < >> < <</p>

Conclusions

- Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);
- Exploratory analysis of the transient dynamics;

Conclusions

- Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);
- Exploratory analysis of the transient dynamics;
- Asymptotic good agreement with numerical and experimental data;

Conclusions

- Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);
- Exploratory analysis of the transient dynamics;
- Asymptotic good agreement with numerical and experimental data;
 ⇒ Quite rich description of the wake stability.

Conclusions

- Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);
- Exploratory analysis of the transient dynamics;
- Asymptotic good agreement with numerical and experimental data;
 ⇒ Quite rich description of the wake stability.
- The energy spectrum of intermediate waves decays with the same exponent observed for fully developed turbulent flows, where the nonlinear interaction is considered dominant;

Conclusions

- Synthetic perturbation hypothesis leading to absolute instability pockets in the intermediate wake (*Re* = 50, 100);
- Exploratory analysis of the transient dynamics;
- Asymptotic good agreement with numerical and experimental data;
 ⇒ Quite rich description of the wake stability.
- The energy spectrum of intermediate waves decays with the same exponent observed for fully developed turbulent flows, where the nonlinear interaction is considered dominant;
- The -5/3 power-law scaling of inertial waves seems to be a general dynamical property of the Navier-Stokes solutions, which encompasses the nonlinear interaction.

< □ > < □ > < □ > < □ >

• Energy spectrum of the plane Poiseuille flow;

Next Steps

- Energy spectrum of the plane Poiseuille flow;
- Initial-value problem for the cross flow boundary layer (U(y), W(y));

Next Steps

- Energy spectrum of the plane Poiseuille flow;
- Initial-value problem for the cross flow boundary layer (U(y), W(y));

Next Steps

- Energy spectrum of the plane Poiseuille flow;
- Initial-value problem for the cross flow boundary layer (U(y), W(y));

• Analytical solution of multiscaling O(1) for $k \rightarrow 0$.

Next Steps

• Short wavelength results (movie).

イロト イ団ト イヨト イヨ