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Linear stability analysis of the 2D bluff-body wake

Stability analysis
Hydrodynamics stability is important in different fields (aerodynam-
ics, oceanography, environmental sciences, etc);

To understand the reasons for the breakdown of laminar flow;
To predict the transition to turbulence.

Modal theory
Flow asymptotically stable or unstable;
Discrete spectrum (not complete for unbounded flows);
Convective and absolute instability.

Initial-value problem
Temporal evolution of arbitrary disturbances;
Importance of the transient growth (e. g. by-pass transition);
Aim to understand the cause of any possible instability in terms of
the underlying physics.
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Base Flow

The two-dimensional bluff-body wake

Flow behind a circular cylinder:

⇒ Steady, incompressible and viscous;
Approximation of 2D asymptotic Navier-Stokes expansions (Belan
& Tordella, Phys. Fluids, 2003), 20 ≤ Re ≤ 100.
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The two-dimensional bluff-body wake
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Normal Mode Analysis
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Modal Theory

The linearized perturbative equation in terms of stream function
ψ(x , y , t) is

∂t∇2ψ + (∂x∇2Ψ)ψy + Ψy∂x∇2ψ − (∂y∇2Ψ)ψx −Ψx∂y∇2ψ =
1

Re
∇4ψ

Normal mode hypothesis⇒ ψ(x , y , t) = ϕ(x , y , t) ei(h0x−σ0t)

ϕ(x , y , t) complex eigenfunction;
h0 = k0 + is0 complex wavenumber (k0 wavenumber, s0 spatial
growth rate);
σ0 = ω0 + ir0 complex frequency (ω0 frequency, r0 temporal growth
rate);

Convective instability: r0 < 0 for all modes, s0 < 0 for at least
one mode.
Absolute instability: r0 > 0, ∂σ0/∂h0 = 0 for at least one mode.
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Stability analysis through multiscale approach

Slow variables: x1 = εx , t1 = εt , ε = 1/Re.

Hypothesis: ψ(x , y , t) and Ψ(x , y , t) are expansions in terms of ε:
(ODE dependent on ϕ0) + ε (ODE dependent on ϕ0, ϕ1) + O(ε2)
Order zero: homogeneous Orr-Sommerfeld equation

Aϕ0 = σ0Bϕ0 A = (∂2
y − h2

0)2 − ih0Re[u0(∂2
y − h2

0)− ∂2
y u0]

ϕ0 → 0, |y | → ∞ B = −iRe(∂2
y − h2

0)

∂yϕ0 → 0, |y | → ∞

⇒ eigenfunctions ϕ0 and a discrete set of eigenvalues σ0n.
First order: Non homogeneous Orr-Sommerfeld equation

Aϕ1 = σ0Bϕ1 +Mϕ0 M =
[
Re(2h0σ0 − 3h2

0u0 − ∂2
y u0) + 4ih3

0

]
∂x1

ϕ1 → 0, |y | → ∞ + (Reu0 − 4ih0)∂3
x1yy − Rev1(∂3

y − h2
0∂y ) + Re∂2

y v1∂y

∂yϕ1 → 0, |y | → ∞ + ih0Re
[
u1(∂2

y − h2
0)− ∂2

y u1

]
+ Re(∂2

y − h2
0)∂t1
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Perturbative hypothesis: saddle point sequence

For fixed values of x and Re, the saddle points (h0s, σ0s) of the
dispersion relation σ0 = σ0(x ; h0,Re) satisfy ∂σ0/∂h0 = 0;
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Perturbative hypothesis: saddle point sequence
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Instability characteristics: saddle point sequence
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Global Pulsation
Comparison between present solution (accuracy ∆ω = 0.05), Ze-
bib’s numerical study (J. Eng. Math., 1987), Pier’s direct numeri-
cal simulations (J. Fluid Mech., 2002), Williamson’s experimental
results (Phys. Fluids, 1988).
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Initial-value Problem Formulation

Linear three-dimensional perturbative equations in terms of veloc-
ity and vorticity (Criminale & Drazin, Stud. Applied Math., 1990);

Base flow parametric in x and Re⇒ U(y ; x0,Re);
Laplace-Fourier transform in x and z directions, α complex, γ real;
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γ = transversal wavenumber
α

r
 = longitudinal wavenumber

k = polar wavenumber

φ = angle of obliquity

α
i
 = spatial damping rate
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Perturbative equations

Perturbative linearized system:

∂2v̂
∂y2

− (k2 − α2
i + 2iαrαi )v̂ = Γ̂

∂Γ̂

∂t
= (iαr − αi )(

d2U
dy2

v̂ − UΓ̂) +
1

Re
[
∂2Γ̂

∂y2
− (k2 − α2

i + 2iαrαi )Γ̂]

∂ω̂y

∂t
= −(iαr − αi )Uω̂y − iγ

dU
dy

v̂ +
1

Re
[
∂2ω̂y

∂y2
− (k2 − α2

i + 2iαrαi )ω̂y ]

The transversal velocity and vorticity components are v̂ and ω̂y

respectively, Γ̂ is defined as Γ̃ = ∂x ω̃z − ∂z ω̃x .
Initial conditions:

ω̂y (0, y) = 0;
Γ̂(0, y) = e−y2

sin(y) or Γ̂(0, y) = e−y2
cos(y);

Boundary conditions: (û, v̂ , ŵ)→ 0 as y →∞.
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Measure of the Growth

Kinetic energy density e:

e(t ;α, γ) =
1
2

1
2yd

∫ +yd

−yd

(|û|2 + |v̂ |2 + |ŵ |2)dy

=
1
2

1
2yd

1
|α2 + γ2|

∫ +yd

−yd

(|
∂v̂
∂y
|2 + |α2 + γ2||v̂ |2 + |ω̂y |2)dy

Amplification factor G:

G(t ;α, γ) =
e(t ;α, γ)

e(t = 0;α, γ)
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Measure of the Growth

Temporal growth rate r (Lasseigne et al., J. Fluid Mech., 1999):

r(t ;α, γ) =
log|e(t ;α, γ)|

2t
, t > 0

Angular frequency (pulsation) ω (Whitham, 1974):

ω(t ;α, γ) =
dϕ(t)

dt
, ϕ time phase
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Exploratory Analysis of the Transient Dynamics
Effect of the angle of obliquity
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Exploratory Analysis of the Transient Dynamics
Effect of the symmetry of the perturbation
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Exploratory Analysis of the Transient Dynamics
Effect of the wavenumber
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Exploratory Analysis of the Transient Dynamics
Effect of the spatial damping rate (αi ) and the number of oscillations (n0)
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Comparison with modal analysis and laboratory data
Angular frequency and temporal growth rate, αi = 0.05, φ = 0, x0 = 10.
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Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);

Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Normal Mode Analysis
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);
Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Normal Mode Analysis
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);
Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Normal Mode Analysis
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Full linear problem

Linearized 3D equations and Laplace-Fourier transform (x , z);
Base flow parametric in x and Re⇒ (U(y ; x0,Re),V (y ; x0,Re));

∂2v̂
∂y2 − (k2 − α2

i + 2ikcos(φ)αi )v̂ = Γ̂

∂Γ̂

∂t
= GΓ̂ + Hv̂ + K ω̂y

∂ω̂y

∂t
= Lω̂y + Mv̂

G = G(y ; x0, k , φ, αi ,Re), and similarly H, K , L and M, are ordi-
nary differential operators.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Normal Mode Analysis
Transient and Long-Term Behavior of Small 3D Perturbations
Multiscale analysis for the stability of long 3D waves

Multiple scales hypothesis

Regular perturbation scheme, k � 1:

v̂ = v̂0 + kv̂1 + k2v̂2 + · · · ,
Γ̂ = Γ̂0 + k Γ̂1 + k2Γ̂2 + · · · ,
ω̂y = ω̂y0 + k ω̂y1 + k2ω̂y2 + · · · .

Temporal scales: t , τ = kt , T = k2t ;
Spatial scales: y , Y = ky .
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Multiple scales equations up to O(k)

Order O(1)

∂2v̂0

∂y2 + α2
i v̂0 = Γ̂0

∂Γ̂0

∂t
−G0Γ̂0 − H0v̂0 = 0

∂ω̂y0

∂t
− L0ω̂y0 = 0

where G0 = G0(y ; x0, φ, αi ,Re) and similarly for H0 and L0.
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Multiscale and full problem results
Effect of αi and k
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Multiscale and full problem results
Effect of the symmetry of the perturbation
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Asymptotic state

Temporal asymptotic values of the angular frequency ω and the
temporal growth rate r .
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General Aspects and Motivation
Results

Energy spectrum and linear stability analysis

Variety of the transient linear dynamics ⇒ Understand how the
energy spectrum behaves and compare it with the developed tur-
bulent state;

We consider the state that precedes the onset of instabilities
⇒ the system is stable but subject to small 3D perturbations:

To understand how spectral representation can effectively highlight
the nonlinear interaction among different scales;
To quantify the degree of generality on the value of the exponent of
the inertial range;

The set of small 3D perturbations:
Includes all the processes of the perturbative Navier-Stokes equa-
tions (linearized convective transport, molecular diffusion, linearized
vortical stretching);
Leaves aside the nonlinear interaction among the different scales.
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Spectral analysis through initial-value problem

The perturbative evolution is ruled out by the initial-value prob-
lem associated to the Navier-Stokes linearized formulation;

We propose an experimental approach – based on the numerical
determination of a large number of perturbations – to approximate
the general perturbation solution of a Navier-Stokes field;
We determine the exponent of the energy spectrum of arbitrary
longitudinal and transversal perturbations and we compare it with
the well-known -5/3 Kolmogorov power-law scaling:

The difference is large ⇒ quantitative measure of the nonlinear in-
teraction in spectral terms;
The difference is small ⇒ higher degree of universality on the value
of the exponent of the inertial range, not necessarily associated to
the nonlinear interaction.

Scarsoglio & Tordella, AFMC17, 2010.
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Energy Spectrum

Perturbation energy normalized over the value at t = 0⇒ G(k);

The energy spectrum is computed at the asymptotic state, since
it can widely vary during the transient:

dG(t)/dt = Cs (= 10−4) for stable perturbations;
dG(t)/dt = Cu (= 10+4) for unstable perturbations.

Stable (Re = 30) and unstable (Re = 100) configurations ⇒ Far
from the turbulent state;
Intermediate (x0 = 10) and far (x0 = 50) field configurations;
k ∈ [0.5,500], αi = 0, and φ = 0, π/4, π/2;
Symmetric and asymmetric initial conditions.
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Unstable configurations
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Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);

Exploratory analysis of the transient dynamics;
Asymptotic good agreement with numerical and experimental data;
⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;
The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Conclusions

Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);
Exploratory analysis of the transient dynamics;

Asymptotic good agreement with numerical and experimental data;
⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;
The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Conclusions

Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);
Exploratory analysis of the transient dynamics;
Asymptotic good agreement with numerical and experimental data;

⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;
The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Conclusions

Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);
Exploratory analysis of the transient dynamics;
Asymptotic good agreement with numerical and experimental data;
⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;
The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Conclusions

Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);
Exploratory analysis of the transient dynamics;
Asymptotic good agreement with numerical and experimental data;
⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;

The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Conclusions

Synthetic perturbation hypothesis leading to absolute instability
pockets in the intermediate wake (Re = 50,100);
Exploratory analysis of the transient dynamics;
Asymptotic good agreement with numerical and experimental data;
⇒ Quite rich description of the wake stability.

The energy spectrum of intermediate waves decays with the same
exponent observed for fully developed turbulent flows, where the
nonlinear interaction is considered dominant;
The −5/3 power-law scaling of inertial waves seems to be a gen-
eral dynamical property of the Navier-Stokes solutions, which en-
compasses the nonlinear interaction.

S. Scarsoglio CSElab, ETH Zurich



Introduction
Physical Problem

Hydrodynamic Stability
Power-law decay of the energy spectrum

Conclusions

Next Steps

Energy spectrum of the plane Poiseuille flow;

Initial-value problem for the cross flow boundary layer (U(y),W (y));
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Next Steps

Short wavelength results (movie).
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