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Motivation and general aspects

Spatial patterns

Patterns are widely present in natural dynamical systems:
⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant
ecosystems (e.g. dryland and riparian vegetation), biochemical
and neural systems, etc;

Useful information on the processes causing changes of the sys-
tem. For example, vegetation patterns have been related to:

the nature of the interactions among plant individuals (Lefever & Leje-
une 1997, Barbier et al. 2007);
the landscape’s susceptibility to desertification (von Hardenberg et al.
2001, D’Odorico et al. 2005).

Deterministic models have been studied for quite a long time (Tur-
ing 1952, Cross & Hohenberg 1993) with a number of applications to en-
vironmental processes (Borgogno et al. 2009, von Hardenberg et al. 2010,
Manor & Shnerb 2008, Couteron & Lejeune 2001, Rietkerk & Van de Koppel 2008,
Kefi et al. 2007, Lefever et al. 2009).
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Motivation and general aspects

Noise-induced pattern formation

Stochastic models have only been developed more recently (Garcia
& Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of
noisy fluctuations.

⇒ An increase of the noise can produce a more regular be-
haviour (counterintuitive!).

Models of noise-induced pattern formation mainly involve multi-
plicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et
al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);

Additive noise has often been investigated in non-linear models
(Zaikin & Schimansky-Geier 1998, Dutta et al. 2005), and with the concur-
rent action of a multiplicative noise (Landa et al. 1998, Zaikin et al. 1999);
Since these models use complicated non-linear terms for the local
dynamics and the multiplicative noise terms, their process-based
interpretation is often not straightforward.
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Motivation and general aspects

Stochastic mechanisms

Overview of the main stochastic processes related to the pres-
ence of a Gaussian white noise. In particular, we focus on the
fundamental components able to induce spatial coherence:

a linear local dynamics, which damps the system to zero;
an additive noise, which avoids the deterministic dynamics to decay;
a diffusive spatial coupling term, which provides spatial coherence.

Gaussian white (in time and space) noise:
Valid assumption for the unavoidable randomness of real systems;
Simplification of analytical and numerical calculations;
Rich literature (unlike Gaussian colored or dichotomous noise).

We call patterned a field that exhibits an ordered state with or-
ganized spatial structures. This definition is often adopted in the
environmental sciences, where the concomitance of many pro-
cesses can prevent the organization of the system with a clear
dominant wavelength.
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Spatio-temporal dynamics

Stochastic modeling: general framework

Temporal evolution of the state variable φ at any point r = (x , y):

∂φ

∂t
= f (φ) + g(φ)ξ(r, t) + DL[φ] + h(φ)F (t)

f (φ): local dynamics (in the absence of spatial interactions with
other points of the domain) ⇒ local rate of increase/decrease
(vegetation mortality rate);

g(φ)ξ: noise component, ξ zero-mean Gaussian white noise with
correlation 〈ξ(x , t)ξ(x ′, t ′)〉 = sδ(x − x ′)δ(t − t ′) and intensity s⇒
environmental disturbances (fires, rain, etc);

DL[φ]: spatial coupling. Laplacian (∇2) or the Swift-Hohenberg
(∇2 + k2

0 )
2 coupling (k0: selected wavenumber), D is the strength

of the spatial coupling⇒ diffusion mechanisms (vegetation spatial
interactions);

h(φ)F (t): time-dependent forcing term, which can be modulated
by a function, h(φ), of the local state of the system ⇒ seasonal
phenomena (phreatic aquifer).
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Stochastic modeling

Simple stochastic model

∂φ

∂t
= −φ+ D∇2φ+ ξ

−φ: linear decreasing term⇒ Deterministic local dynamics;
D∇2φ: linear Laplacian (diffusive) operator⇒ Spatial interactions;
ξ: white Gaussian zero-mean noise⇒ Random fluctuations;
Noise-induced pattern formation ⇒ the deterministic dynamics
(ξ = 0) do not exhibit patterns;
Additive noise does not play the role of a precursor of a phase
transition in a deterministic system close to a bifurcation point,
since there is no bifurcation in the deterministic dynamics;
Analytical tools:

Mean-field analysis (MFA): analytical expression of the pdf at steady
state. Classic MFA and a corrected version;
Structure function (SF): prognostic tool able to assess the presence
of a selected wavelength in the spatial field;

Scarsoglio, Laio, Ridolfi, D’Odorico, submitted Phys. Rev. Lett. 2010.
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of a selected wavelength in the spatial field;
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−φ: linear decreasing term⇒ Deterministic local dynamics;
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Results

Steady and multiscale patterns
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(top) Numerical simulation of φ at t = 0, 10, 100, D = 50, s = 5. (below) Pdf (solid:
numerical simulation, dotted: classic MFA, dashed: corrected MFA) and azimuthal-
averaged power spectrum S (solid: numerical simulation, dotted: SF) of φ at t = 100.
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Results

Role of D
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(top) Numerical simulation of φ at t = 100, s = 1, D = 1, 10, 100 (left to right). (below)
Pdf of φ (solid: numerical simulation, dotted: classic MFA, dashed: corrected MFA).
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Results

Comparison with vegetation pattern

∂φ

∂t
= −φ+ D∇2φ+ ξ + µ

−φ: local linear decreasing dynamics of the existing vegetation;
D∇2φ: vegetation’s ability to develop spatial interactions;
ξ + µ: random rain water availability;

(left) Aerial photograph of vegetation pattern in New Mexico (34◦47’N, 108◦21’O) and
(right) numerical simulation at t = 100, a = −1, D = 80, s = 2, µ = 0.1.
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High-order diffusion term: Swift-Hohenberg spatial coupling

Steady and periodic patterns
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(left) Numerical simulation of φ at t = 100, s = 1, D = 10, k0 = 1. (right) Azimuthal-
averaged power spectrum S (solid: numerical simulation, dotted: SF).
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Stochastic model

Short-term instability and spatial coupling

∂φ

∂t
= f (φ) + g(φ)ξ(r, t) + DL[φ]

The cooperation between multiplicative noise and spatial coupling
is based on two key actions:

The multiplicative noise component temporarily destabilizes the ho-
mogeneous stable state of the underlying deterministic dynamics;
The spatial coupling exploits this initial instability, giving rise to the
pattern and stabilizing it.

For s < sc , the system remains blocked in the disordered phase
and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

For s > sc , the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.
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Stochastic model

Short-term instability and spatial coupling
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and no patterns occur. Only transiently, the spatial coupling might
be able to induce patterns that fade away at steady state;

For s > sc , the spatial term can take advantage from the noise-
induced short-term instability and prevents the decay to zero. The
spatial coupling traps the system in a new ordered state.



university-logo

Introduction Additive noise Multiplicative noise Non-linear dynamics Temporal forcing terms Conclusions

Swift-Hohenberg spatial coupling

Steady and periodic patterns
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(top) Numerical simulation of the spatial field φ at t = 0, 10, 100, with D = 15, s = 5,
k0 = 1. (below) Pdf and azimuthal-averaged power spectrum S at t = 100.
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Swift-Hohenberg spatial coupling

Steady and periodic patterns
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(top) Numerical simulation of the spatial field φ at t = 0, 10, 100, with D = 15, s = 5,
k0 = 1. (below) Pdf and azimuthal-averaged power spectrum S at t = 100.
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Laplacian spatial coupling

Transient and multiscale patterns
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(top) Numerical simulation of the spatial field φ at t = 0, 10, 40, with D = 20, s = 4.
(below) Pdf and azimuthal-averaged power spectrum S at t = 40.
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Laplacian spatial coupling

Transient and multiscale patterns
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(top) Numerical simulation of the spatial field φ at t = 0, 10, 40, with D = 20, s = 4.
(below) Pdf and azimuthal-averaged power spectrum S at t = 40.
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Swift-Hohenberg and Laplacian spatial couplings

Non-linear dynamics

∂φ

∂t
= −φ(1 + φ2)2 + (1 + φ2)ξ + DL[φ]

Numerical simulation of φ. (left) Swift-Hohenberg spatial coupling at t = 100, D = 15,
s = 5, k0 = 1, and (right) Laplacian spatial coupling at t = 200, D = 20, s = 4.

Non-linearities do not change the pattern scenario, provided that the
interplay between short-term instability and spatial coupling remains
the same.
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Stochastic resonance

Time oscillating patterns

∂φ

∂t
= [−k + α sin(ωt)]φ− φ3 − D(k2

0 +∇2)2φ+ ξ

s = 0.025

s = 2.5

t = 110 t = 140 t = 195
Numerical simulation of φ with α = k0 = 1, k = 0.1, ω/2π = 0.012, and D = 1.
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Concluding remarks

Conclusions

Three main components play a fundamental role in the mecha-
nism of noise-induced pattern formation:

A deterministic local dynamics, which tends to drive the field vari-
able to a uniform steady state (this component is not able to explain
pattern formation);
An additive noise able to maintain the dynamics away from the uni-
form steady state;
A spatial coupling term which provides spatial coherence.

For high enough multiplicative noise intensity, the spatial coupling
exploits the initial instability giving rise to ordered structures;
The presence of a temporal periodicity promotes oscillating pat-
terns which periodically emerge and disappear;
Since noisy fluctuations are always present in real systems and
pattern formation, here described, is completely noise-induced,
randomness can actually promote spatial coherence in different
environmental processes.
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