Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions O
	00000				

Noise-induced spatial pattern formation

Stefania Scarsoglio¹ Francesco Laio¹ Paolo D'Odorico² Luca Ridolfi¹

¹Department of Hydraulics, Politecnico di Torino, Torino, Italy ²Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA

ESF Workshop

Self-organised ecogeomorphic systems: confronting models with data for land-degradation in drylands

07-10 June 2010, Potsdam, Germany

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outlin	е				

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outlin	е				

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outlin	Δ				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2 Additive noise
- 3 Multiplicative noise

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outline	`				

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

- 2 Additive noise
- 3 Multiplicative noise
- 4 Non-linear dynamics

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outline	•				

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 2 Additive noise
- Multiplicative noise
- 4 Non-linear dynamics
- 5 Temporal forcing terms

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Outline	٦				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Additive noise
- Multiplicative noise
- 4 Non-linear dynamics
- 5 Temporal forcing terms

6 Conclusions

Introduction •ooo	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and gene	eral aspects				
Spatial	patterns	\$			

Patterns are widely present in natural dynamical systems:
 ⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and riparian vegetation), biochemical and neural systems, etc;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction ●OOO	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O		
Motivation and general aspects							
Spatial	patterns	\$					

- Patterns are widely present in natural dynamical systems:
 ⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and riparian vegetation), biochemical and neural systems, etc;
- Useful information on the processes causing changes of the system. For example, vegetation patterns have been related to:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction ●OOO	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O		
Motivation and general aspects							
Spatial	patterns	\$					

- Patterns are widely present in natural dynamical systems:
 ⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and riparian vegetation), biochemical and neural systems, etc;
- Useful information on the processes causing changes of the system. For example, vegetation patterns have been related to:
 - the nature of the interactions among plant individuals (*Lefever & Leje-une 1997*, *Barbier et al. 2007*);

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction ●OOO	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O		
Motivation and general aspects							
Spatial	patterns	\$					

- Patterns are widely present in natural dynamical systems:
 ⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and riparian vegetation), biochemical and neural systems, etc;
- Useful information on the processes causing changes of the system. For example, vegetation patterns have been related to:
 - the nature of the interactions among plant individuals (*Lefever & Leje-une 1997*, *Barbier et al. 2007*);
 - the landscape's susceptibility to desertification (von Hardenberg et al. 2001, D'Odorico et al. 2005).

Introduction ●OOO	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O		
Motivation and general aspects							
Spatial	patterns	\$					

- Patterns are widely present in natural dynamical systems:
 ⇒ hydrodynamic systems (e.g. Rayleigh-Bénard convection), plant ecosystems (e.g. dryland and riparian vegetation), biochemical and neural systems, etc;
- Useful information on the processes causing changes of the system. For example, vegetation patterns have been related to:
 - the nature of the interactions among plant individuals (*Lefever & Leje-une 1997*, *Barbier et al. 2007*);
 - the landscape's susceptibility to desertification (von Hardenberg et al. 2001, D'Odorico et al. 2005).
- Deterministic models have been studied for quite a long time (*Turing 1952, Cross & Hohenberg 1993*) with a number of applications to environmental processes (*Borgogno et al. 2009, von Hardenberg et al. 2010, Manor & Shnerb 2008, Couteron & Lejeune 2001, Rietkerk & Van de Koppel 2008, Kefi et al. 2007, Lefever et al. 2009*).

Motivation and gene	Motivation and general aspects									
Introduction O ● O O	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O					

Stochastic models have only been developed more recently (Garcia & Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of noisy fluctuations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and ge	neral aspects				
KI					

Stochastic models have only been developed more recently (Garcia & Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of noisy fluctuations.

 \Rightarrow An increase of the noise can produce a more regular behaviour (*counterintuitive!*).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction OOO	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and gen	eral aspects				

Stochastic models have only been developed more recently (Garcia & Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of noisy fluctuations.

 \Rightarrow An increase of the noise can produce a more regular behaviour (*counterintuitive!*).

Models of noise-induced pattern formation mainly involve multiplicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Motivation and ge	neral aspects				

• Stochastic models have only been developed more recently (*Garcia & Ojalvo 1999, Sagues et al. 2007*): patterns can emerge as a result of noisy fluctuations.

 \Rightarrow An increase of the noise can produce a more regular behaviour (*counterintuitive!*).

- Models of noise-induced pattern formation mainly involve multiplicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);
- Additive noise has often been investigated in non-linear models (Zaikin & Schimansky-Geier 1998, Dutta et al. 2005), and with the concurrent action of a multiplicative noise (Landa et al. 1998, Zaikin et al. 1999);

(日) (日) (日) (日) (日) (日) (日)

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Motivation and ge	neral aspects				

Stochastic models have only been developed more recently (Garcia & Ojalvo 1999, Sagues et al. 2007): patterns can emerge as a result of noisy fluctuations.

 \Rightarrow An increase of the noise can produce a more regular behaviour (*counterintuitive!*).

- Models of noise-induced pattern formation mainly involve multiplicative noise (Van den Broeck et al. 1994, Garcia & Ojalvo 1996, Sieber et al. 2007) along with a high-order diffusion term (Garcia & Ojalvo 1993);
- Additive noise has often been investigated in non-linear models (*Zaikin & Schimansky-Geier 1998, Dutta et al. 2005*), and with the concurrent action of a multiplicative noise (*Landa et al. 1998, Zaikin et al. 1999*);
- Since these models use complicated non-linear terms for the local dynamics and the multiplicative noise terms, their process-based interpretation is often not straightforward.

Introduction 00●0	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and gene	eral aspects				
Stocha	stic mec	hanisms			

• Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and ger	ieral aspects				
Stocha	astic med	chanisms			

• Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• a linear local dynamics, which damps the system to zero;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and ge	neral aspects				
Stocha	astic med	chanisms			

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O			
Motivation and general aspects								
Stoch	astic med	chanisms						

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.

OOOO Motivation and ge	00000		O	O	O
Stocha	astic med	chanisms			

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.

• Gaussian white (in time and space) noise:

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O			
Motivation and general aspects								
Stoch	astic med	chanisms						

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.
- Gaussian white (in time and space) noise:
 - Valid assumption for the unavoidable randomness of real systems;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O			
Motivation and general aspects								
Stoch	astic med	chanisms						

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.
- Gaussian white (in time and space) noise:
 - Valid assumption for the unavoidable randomness of real systems;

Simplification of analytical and numerical calculations;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and ge	neral aspects				
Stoch	astic med	chanisms			

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.
- Gaussian white (in time and space) noise:
 - Valid assumption for the unavoidable randomness of real systems;

- Simplification of analytical and numerical calculations;
- Rich literature (unlike Gaussian colored or dichotomous noise).

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Motivation and ge	neral aspects				
Stocha	astic med	chanisms			

- Overview of the main stochastic processes related to the presence of a Gaussian white noise. In particular, we focus on the fundamental components able to induce spatial coherence:
 - a linear local dynamics, which damps the system to zero;
 - an additive noise, which avoids the deterministic dynamics to decay;
 - a diffusive spatial coupling term, which provides spatial coherence.
- Gaussian white (in time and space) noise:
 - Valid assumption for the unavoidable randomness of real systems;
 - Simplification of analytical and numerical calculations;
 - Rich literature (unlike Gaussian colored or dichotomous noise).
- We call patterned a field that exhibits an ordered state with organized spatial structures. This definition is often adopted in the environmental sciences, where the concomitance of many processes can prevent the organization of the system with a clear dominant wavelength.

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Spatio-temporal dyna	nics				

Temporal evolution of the state variable ϕ at any point **r** = (*x*, *y*):

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi] + h(\phi)F(t)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Spatio-temporal dyna	mics				

Temporal evolution of the state variable ϕ at any point $\mathbf{r} = (\mathbf{x}, \mathbf{y})$:

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r},t) + D\mathcal{L}[\phi] + h(\phi)F(t)$$

 f(φ): local dynamics (in the absence of spatial interactions with other points of the domain) ⇒ local rate of increase/decrease (vegetation mortality rate);

(日) (日) (日) (日) (日) (日) (日)

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Spatio-temporal dyna	mics				

Temporal evolution of the state variable ϕ at any point $\mathbf{r} = (\mathbf{x}, \mathbf{y})$:

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r},t) + D\mathcal{L}[\phi] + h(\phi)F(t)$$

- f(φ): local dynamics (in the absence of spatial interactions with other points of the domain) ⇒ local rate of increase/decrease (vegetation mortality rate);
- $g(\phi)\xi$: noise component, ξ zero-mean Gaussian white noise with correlation $\langle \xi(x,t)\xi(x',t')\rangle = s\delta(x-x')\delta(t-t')$ and intensity $s \Rightarrow$ environmental disturbances (*fires, rain, etc*);

(日) (日) (日) (日) (日) (日) (日)

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Spatio-temporal dyna	mics				

Temporal evolution of the state variable ϕ at any point $\mathbf{r} = (\mathbf{x}, \mathbf{y})$:

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r},t) + D\mathcal{L}[\phi] + h(\phi)F(t)$$

- f(φ): local dynamics (in the absence of spatial interactions with other points of the domain) ⇒ local rate of increase/decrease (vegetation mortality rate);
- $g(\phi)\xi$: noise component, ξ zero-mean Gaussian white noise with correlation $\langle \xi(x,t)\xi(x',t')\rangle = s\delta(x-x')\delta(t-t')$ and intensity $s \Rightarrow$ environmental disturbances (*fires, rain, etc*);
- $D\mathcal{L}[\phi]$: spatial coupling. Laplacian (∇^2) or the Swift-Hohenberg $(\nabla^2 + k_0^2)^2$ coupling (k_0 : selected wavenumber), *D* is the strength of the spatial coupling \Rightarrow diffusion mechanisms (*vegetation spatial interactions*);

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000					
Spatio-temporal dyna	amics				

Temporal evolution of the state variable ϕ at any point $\mathbf{r} = (\mathbf{x}, \mathbf{y})$:

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r},t) + D\mathcal{L}[\phi] + h(\phi)F(t)$$

- f(φ): local dynamics (in the absence of spatial interactions with other points of the domain) ⇒ local rate of increase/decrease (vegetation mortality rate);
- $g(\phi)\xi$: noise component, ξ zero-mean Gaussian white noise with correlation $\langle \xi(x,t)\xi(x',t')\rangle = s\delta(x-x')\delta(t-t')$ and intensity $s \Rightarrow$ environmental disturbances (*fires, rain, etc*);
- $D\mathcal{L}[\phi]$: spatial coupling. Laplacian (∇^2) or the Swift-Hohenberg $(\nabla^2 + k_0^2)^2$ coupling (k_0 : selected wavenumber), *D* is the strength of the spatial coupling \Rightarrow diffusion mechanisms (*vegetation spatial interactions*);
- $h(\phi)F(t)$: time-dependent forcing term, which can be modulated by a function, $h(\phi)$, of the local state of the system \Rightarrow seasonal phenomena (*phreatic aquifer*).

Introduction	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms	Conclusions O
Stochastic modeling					

Simple stochastic model

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

Introduction 0000	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model	ing				
<u></u>					

Simple stochastic model

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;

Introduction 0000	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic modeli	ing				
Simple	e stochas	stic model			

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;

Introduction	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic modeli	ng				
- · · ·					

Simple stochastic model

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic modeling					

Simple stochastic model

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;
- ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;
- Noise-induced pattern formation \Rightarrow the deterministic dynamics ($\xi = 0$) do not exhibit patterns;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000	●○○○○		O	O	O
Stochastic modeling					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;
- ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;
- Noise-induced pattern formation \Rightarrow the deterministic dynamics $(\xi = 0)$ do not exhibit patterns;
- Additive noise does not play the role of a precursor of a phase transition in a deterministic system close to a bifurcation point, since there is no bifurcation in the deterministic dynamics;

(日) (日) (日) (日) (日) (日) (日)

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000	●○○○○		O	O	O
Stochastic modeling					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;
- ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;
- Noise-induced pattern formation \Rightarrow the deterministic dynamics $(\xi = 0)$ do not exhibit patterns;
- Additive noise does not play the role of a precursor of a phase transition in a deterministic system close to a bifurcation point, since there is no bifurcation in the deterministic dynamics;
- Analytical tools:
 - Mean-field analysis (MFA): analytical expression of the pdf at steady state. Classic MFA and a corrected version;

Introduction	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic modeling					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;
- ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;
- Noise-induced pattern formation \Rightarrow the deterministic dynamics ($\xi = 0$) do not exhibit patterns;
- Additive noise does not play the role of a precursor of a phase transition in a deterministic system close to a bifurcation point, since there is no bifurcation in the deterministic dynamics;
- Analytical tools:
 - Mean-field analysis (MFA): analytical expression of the pdf at steady state. Classic MFA and a corrected version;
 - Structure function (SF): prognostic tool able to assess the presence of a selected wavelength in the spatial field;

Scarsoglio, Laio, Ridolfi, D'Odorico, submitted *Phys. Rev. Lett.* 2010.

Introduction	Additive noise ●○○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic modeling					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi$$

- $-\phi$: linear decreasing term \Rightarrow Deterministic local dynamics;
- $D\nabla^2 \phi$: linear Laplacian (diffusive) operator \Rightarrow Spatial interactions;
- ξ : white Gaussian zero-mean noise \Rightarrow Random fluctuations;
- Noise-induced pattern formation \Rightarrow the deterministic dynamics $(\xi = 0)$ do not exhibit patterns;
- Additive noise does not play the role of a precursor of a phase transition in a deterministic system close to a bifurcation point, since there is no bifurcation in the deterministic dynamics;
- Numerical simulations:
 - Heun's predictor corrector scheme, 2D square lattice with 128x128 sites;
 - periodic BCs, ICs given by uniformly distributed random numbers between [-0.01, 0.01].

Scarsoglio, Laio, Ridolfi, D'Odorico, submitted *Phys. Rev. Lett.* 2010.

Introduction	Additive noise ○●○○○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					
Steady	and mul	tiscale pat	terns		

(top) Numerical simulation of ϕ at t = 0, 10, 100, D = 50, s = 5. (below) Pdf (solid: numerical simulation, dotted: classic MFA, dashed: corrected MFA) and azimuthal-averaged power spectrum *S* (solid: numerical simulation, dotted: SF) of ϕ at t = 100.

・ロト・「聞・・「問・・「問・・」 しゃくの

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					
Role of	D				

(top) Numerical simulation of ϕ at t = 100, s = 1, D = 1, 10, 100 (left to right). (below) Pdf of ϕ (solid: numerical simulation, dotted: classic MFA, dashed: corrected MFA).

Introduction	Additive noise ○○○●○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi + \mu$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Introduction	Additive noise ○○○●○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi + \mu$$

• $-\phi$: local linear decreasing dynamics of the existing vegetation;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi + \mu$$

• $-\phi$: local linear decreasing dynamics of the existing vegetation;

(日) (日) (日) (日) (日) (日) (日)

• $D\nabla^2 \phi$: vegetation's ability to develop spatial interactions;

Introduction	Additive noise ○OO●○	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi + \mu$$

• $-\phi$: local linear decreasing dynamics of the existing vegetation;

(日) (日) (日) (日) (日) (日) (日)

- $D\nabla^2 \phi$: vegetation's ability to develop spatial interactions;
- $\xi + \mu$: random rain water availability;

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Results					

$$\frac{\partial \phi}{\partial t} = -\phi + D\nabla^2 \phi + \xi + \mu$$

- $-\phi$: local linear decreasing dynamics of the existing vegetation;
- $D\nabla^2 \phi$: vegetation's ability to develop spatial interactions;
- $\xi + \mu$: random rain water availability;

(left) Aerial photograph of vegetation pattern in New Mexico (34°47'N, 108°21'O) and (right) numerical simulation at t = 100, a = -1, D = 80, s = 2, $\mu = 0.1$.

୍ଚର୍ବ

Introduction 0000	Additive noise ○○○○●	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O				
High-order diffusion	High-order diffusion term: Swift-Hohenberg spatial coupling								
Stead	y and pe	riodic patte	erns						

$$\frac{\partial \phi}{\partial t} = -\phi - D(\nabla^2 + k_0^2)^2 \phi + \xi$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O					
High-order diffusi	High-order diffusion term: Swift-Hohenberg spatial coupling									
<u> </u>		2 A 10 A 1								

Steady and periodic patterns

$$rac{\partial \phi}{\partial t} = -\phi - D(
abla^2 + k_0^2)^2 \phi + \xi$$

(left) Numerical simulation of ϕ at t = 100, s = 1, D = 10, $k_0 = 1$. (right) Azimuthalaveraged power spectrum *S* (solid: numerical simulation, dotted: SF).

・ロト・西・・田・・田・・日・

Introduction	Additive noise	Multiplicative noise ●○○	Non-linear dynamics O	Temporal forcing terms O	Conclusions O				
Stochastic model									

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi]$$

Introduction	Additive noise	Multiplicative noise ●○○	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model					
<u> </u>					

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi]$$

• The cooperation between multiplicative noise and spatial coupling is based on two key actions:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms	Conclusions O
Stochastic model					

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi]$$

- The cooperation between multiplicative noise and spatial coupling is based on two key actions:
 - The multiplicative noise component temporarily destabilizes the homogeneous stable state of the underlying deterministic dynamics;

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction 0000	Additive noise	Multiplicative noise ●○○	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model					

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi]$$

- The cooperation between multiplicative noise and spatial coupling is based on two key actions:
 - The multiplicative noise component temporarily destabilizes the homogeneous stable state of the underlying deterministic dynamics;
 - The spatial coupling exploits this initial instability, giving rise to the pattern and stabilizing it.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model					

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r}, t) + D\mathcal{L}[\phi]$$

- The cooperation between multiplicative noise and spatial coupling is based on two key actions:
 - The multiplicative noise component temporarily destabilizes the homogeneous stable state of the underlying deterministic dynamics;
 - The spatial coupling exploits this initial instability, giving rise to the pattern and stabilizing it.

(日) (日) (日) (日) (日) (日) (日)

• For *s* < *s*_c, the system remains blocked in the disordered phase and no patterns occur. Only transiently, the spatial coupling might be able to induce patterns that fade away at steady state;

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model					

$$\frac{\partial \phi}{\partial t} = f(\phi) + g(\phi)\xi(\mathbf{r},t) + D\mathcal{L}[\phi]$$

- The cooperation between multiplicative noise and spatial coupling is based on two key actions:
 - The multiplicative noise component temporarily destabilizes the homogeneous stable state of the underlying deterministic dynamics;
 - The spatial coupling exploits this initial instability, giving rise to the pattern and stabilizing it.
- For s < s_c, the system remains blocked in the disordered phase and no patterns occur. Only transiently, the spatial coupling might be able to induce patterns that fade away at steady state;
- For *s* > *s*_c, the spatial term can take advantage from the noise-induced short-term instability and prevents the decay to zero. The spatial coupling traps the system in a new ordered state.

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Stochastic model					

- For *s* < *s*_c, the system remains blocked in the disordered phase and no patterns occur. Only transiently, the spatial coupling might be able to induce patterns that fade away at steady state;
- For *s* > *s*_c, the spatial term can take advantage from the noise-induced short-term instability and prevents the decay to zero. The spatial coupling traps the system in a new ordered state.

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Swift-Hohenberg spat	tial coupling				

Steady and periodic patterns

~

$$\frac{\partial \phi}{\partial t} = -\phi - \phi^3 + \phi \xi - D(\nabla^2 + k_0^2)^2 \phi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms	Conclusions
0000		○●○	O	O	O
Swift-Hohenberg spa	atial coupling				

Steady and periodic patterns

0

(top) Numerical simulation of the spatial field ϕ at t = 0, 10, 100, with D = 15, s = 5, $k_0 = 1$. (below) Pdf and azimuthal-averaged power spectrum S at t = 100. ▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

2

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Laplacian spatial coup	pling				

Transient and multiscale patterns

$$\frac{\partial \phi}{\partial t} = -\phi - \phi^3 + \phi \xi + D \nabla^2 \phi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions O
Lanlacian spatial coup	lina				

Transient and multiscale patterns

(below) Pdf and azimuthal-averaged power spectrum S at t = 0.

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms O	Conclusions O		
Swift-Hohenberg and Laplacian spatial couplings							
Non-lir	near dyna	amics					

$$\frac{\partial \phi}{\partial t} = -\phi (1 + \phi^2)^2 + (1 + \phi^2)\xi + D\mathcal{L}[\phi]$$

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms O	Conclusions O			
Swift-Hohenberg and Laplacian spatial couplings								
Non-li	near dyn	amics						

$$\frac{\partial \phi}{\partial t} = -\phi(1+\phi^2)^2 + (1+\phi^2)\xi + D\mathcal{L}[\phi]$$

Numerical simulation of ϕ . (left) Swift-Hohenberg spatial coupling at t = 100, D = 15, s = 5, $k_0 = 1$, and (right) Laplacian spatial coupling at t = 200, D = 20, s = 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics	Temporal forcing terms O	Conclusions O			
Swift-Hohenberg and Laplacian spatial couplings								
Non-li	near dyn	amics						

$$\frac{\partial \phi}{\partial t} = -\phi(1+\phi^2)^2 + (1+\phi^2)\xi + D\mathcal{L}[\phi]$$

Numerical simulation of ϕ . (left) Swift-Hohenberg spatial coupling at t = 100, D = 15, s = 5, $k_0 = 1$, and (right) Laplacian spatial coupling at t = 200, D = 20, s = 4.

Non-linearities do not change the pattern scenario, provided that the interplay between short-term instability and spatial coupling remains the same.

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms	Conclusions O
Stochastic resonance	e				

Time oscillating patterns

$$\frac{\partial \phi}{\partial t} = [-k + \alpha \sin(\omega t)]\phi - \phi^3 - D(k_0^2 + \nabla^2)^2 \phi + \xi$$

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms	Conclusions O
Stochastic resonance					

Time oscillating patterns

$$rac{\partial \phi}{\partial t} = [-k + lpha \sin(\omega t)]\phi - \phi^3 - D(k_0^2 + \nabla^2)^2 \phi + \xi$$

Numerical simulation of ϕ with $\alpha = k_0 = 1$, k = 0.1, $\omega/2\pi = 0.012$, and D = 1.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions
Concluding remarks					
Conclu	sions				

• Three main components play a fundamental role in the mechanism of noise-induced pattern formation:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);
 - An additive noise able to maintain the dynamics away from the uniform steady state;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Introduction 0000	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);
 - An additive noise able to maintain the dynamics away from the uniform steady state;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• A spatial coupling term which provides spatial coherence.

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);
 - An additive noise able to maintain the dynamics away from the uniform steady state;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- A spatial coupling term which provides spatial coherence.
- For high enough multiplicative noise intensity, the spatial coupling exploits the initial instability giving rise to ordered structures;

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);
 - An additive noise able to maintain the dynamics away from the uniform steady state;
 - A spatial coupling term which provides spatial coherence.
- For high enough multiplicative noise intensity, the spatial coupling exploits the initial instability giving rise to ordered structures;
- The presence of a temporal periodicity promotes oscillating patterns which periodically emerge and disappear;

(ロ) (同) (三) (三) (三) (三) (○) (○)

Introduction	Additive noise	Multiplicative noise	Non-linear dynamics O	Temporal forcing terms O	Conclusions •
Concluding remarks					
Conclu	sions				

- Three main components play a fundamental role in the mechanism of noise-induced pattern formation:
 - A deterministic local dynamics, which tends to drive the field variable to a uniform steady state (this component is not able to explain pattern formation);
 - An additive noise able to maintain the dynamics away from the uniform steady state;
 - A spatial coupling term which provides spatial coherence.
- For high enough multiplicative noise intensity, the spatial coupling exploits the initial instability giving rise to ordered structures;
- The presence of a temporal periodicity promotes oscillating patterns which periodically emerge and disappear;
- Since noisy fluctuations are always present in real systems and pattern formation, here described, is completely noise-induced, randomness can actually promote spatial coherence in different environmental processes.