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Introduction

Hitchcock (1927) introduced the tensor rank decomposition:

A =
r∑

i=1

a1
i ⊗ a2

i · · · ⊗ ad
i

A
= + · · ·+

The rank of a tensor is the minimum number of rank-1 tensors of
which it is a linear combination.

A tensor rank decomposition is also called a canonical polyadic
decomposition (CPD).
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If the set of rank-1 tensors {A1, . . . ,Ar} is uniquely determined
given the rank-r tensor A = A1 + · · ·+ Ar , then we call A an
r-identifiable tensor.

Note that matrices are never r -identifiable, because

M =
r∑

i=1

ai ⊗ bi = ABT = (AX−1)(BXT )T

for every invertible X . In general, these factorizations are different.
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Kruskal (1977) gave a famous sufficient condition for proving the
r -identifiability of third-order tensors.

More recently r -identifiability was studied in algebraic geometry.
This is a natural framework because the set of rank-1 tensors

S :=
{

a1 ⊗ a2 ⊗ · · · ⊗ ad | ak ∈ Cnk \ {0}
}

is the smooth projective Segre variety.

The set of tensors of rank bounded by r ,

σ0r (S) :=
{

A1 + · · ·+ Ar | Ai ∈ S
}
,

is the Zariski-open constructible part of the projective r-secant
variety of the Segre variety.
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The number of distinct CPDs is an upper-semicontinuous function
on σ0r (S), and its minimum value is called the r-secant order sr ,
which was initially studied by Chiantini and Ciliberto (2001, 2006).

More precisely, there exists a Zariski-open subset of σ0r (S) where
the number of distinct CPDs equals sr .

If the r -secant order sr = 1 then σr (S) is called generically
r-identifiable.
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Generic r -identifiability of the tensors in Cn1 ⊗ · · · ⊗ Cnd ,

A =
r∑

i=1

a1
i ⊗ · · · ⊗ ad

i with ak
i ∈ Cnk ,

is conjecturally understood because of

1 Strassen (1983) for d = 3 (partial result);

2 Bocci and Chiantini for n1 = · · · = nd = 2;

3 Bocci, Chiantini, and Ottaviani (2013) for unbalanced cases;

4 Chiantini, Ottaviani, and V (2014) for n1 · · · nd ≤ 15000;

5 Abo, Ottaviani, and Peterson (2009); Chiantini and Ottaviani (2012);
Chiantini, Mella, and Ottaviani (2014); etc.

Let n1 ≥ · · · ≥ nd , rcr = n1···nd
1+

∑d
i=1(ni−1)

, rub = n2 · · · nd −
∑d

k=2(nk − 1).

Conjectured general rule:
if r ≥ rcr or d = 2 → not generically r -identifiable
if n1 > rub and r ≥ rub → not generically r -identifiable
if none of foregoing and r < rcr → generically r -identifiable
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The real case is more involved because now

σr (SR) :=
{

A1 + · · ·+ Ar | Ai ∈ S(R)
}
,

is only a semi-algebraic set.

Qi, Comon, and Lim (2016) showed that if σr (S) is generically
r -identifiable, then it follows that the set of real rank-r tensors
with multiple complex CPDs is contained in a proper Zariski-closed
subset of σr (SR). In this sense, σr (SR) is thus also generically
r -identifiable.

See Angelini (2017) and Angelini, Bocci, Chiantini (2017) for more
results on complex versus real identifiability.
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Sensitivity

In numerical computations, the sensitivity of the output of a
computation to perturbations at the input is very important,
because representation and roundoff errors will corrupt any
mathematical inputs.
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Consider the matrix

A =
1

177147

88574 88574 2
88574 88574 2

2 2 177146


Computing the singular value decomposition ÛŜV̂ T of the
floating-point representation Ã of A numerically using Matlab, we
find ‖A− ÛŜV̂ T‖ ≈ 5.66 · 10−16.

The singular values are

numerical exact

0.000000000000000098.. 0
0.9999830649121916 0.999983064912191569713288... = 1− 3−10

1.000016935087808 1.000016935087808430286711... = 1 + 3−10

In all cases, we found 16 correct digits of the exact solution.
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However, when comparing the computed left singular vector
corresponding to σ1 = 1 + 3−10 to the exact solution, we get

numerical exact

0.5773502691883747 1√
3

0.5773502691883748 1√
3

0.5773502691921281 1√
3

We have only recovered 11 digits correctly, even though the matrix
ÛŜV̂ T contains at least 15 correct digits of each entry.

How is this possible?
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We say that the problem of computing the singular values has a
different sensitivity to perturbations than the computational
problem of computing the left singular vectors.

Assuming the singular values are distinct, these problems can be
modeled as functions

f1 : Fm×n → Fmin{m,n}, respectively f2 : Fm×n → Fm×min{m,n}.

What we have observed above is that

0.4 ≈ ‖f1(x)− f1(x + δx)‖
‖δx‖

� ‖f2(x)− f2(x + δx)‖
‖δx‖

≈ 800

at least x = A and δx = Ã− A (with ‖δx‖ ≈ 5 · 10−16).
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Condition numbers

The condition number quantifies the worst-case sensitivity of f
to perturbations of the input.

•
x

• y •
f (x)

•
f (y)

ε

κε

κ[f ](x) := lim
ε→0

sup
y∈Bε(x)

‖f (y)−f (x)‖
‖y−x‖ .
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If f : Fm ⊃ X → Y ⊂ Fn is a differentiable function, then the
condition number is fully determined by the first-order
approximation of f .

Indeed, in this case we have

f (x + ∆) = f (x) + J∆ + o(‖∆‖),

where J is the Jacobian matrix containing all first-order partial
derivatives. Then,

κ = lim
ε→0

sup
‖∆‖≤ε

‖f (x) + J∆ + o(‖∆‖)− f (x)‖
‖∆‖

= max
‖∆‖=1

‖J∆‖
‖∆‖

= ‖J‖2.
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More generally, for manifolds, we can apply Rice’s (1966)
geometric framework of conditioning:1

Proposition (Rice, 1966)

Let X ⊂ Fm be a manifold of inputs and Y ⊂ Fn a manifold of
outputs with dimX = dimY. Then, the condition number of
F : X → Y at x0 ∈ X is

κ[F ](x0) = ‖dx0F‖ = sup
‖x‖=1

‖dx0F (x)‖,

where dx0F : Tx0X → TF (x0)Y is the derivative.

1See, e.g., Blum, Cucker, Shub, and Smale (1998) or Bürgisser and Cucker
(2013) for a more modern treatment.
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The tensor decomposition problem

The condition number of the problem of computing CPDs was only
recently investigated by Breiding and V (2018), after an initial
study of a related problem involving CPDs in V (2017). I discuss
the strategy we detailed in Beltrán, Breiding, and V (2018).

In the remainder, S = S(R). To compute the condition number,
we analyze the addition map:

Φr : S × · · · × S → Rn1×···×nd

(A1, . . . ,Ar ) 7→ A1 + · · ·+ Ar

Note that the domain and codomain are smooth manifolds.
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For simplicity, we restrict the domain of Φr to a Zariski-open
smooth submanifold such that Φr restricts to a diffeomorphism
onto its image.

A set of vectors p1, . . . ,pr ∈ Rn is in general linear position
(GLP) iff every subset of min{r , n} vectors is linearly independent.

A set of rank-1 tensors {a1
i ⊗ · · · ⊗ ad

i }i is in super GLP iff for
every 1 ≤ s ≤ d and every subset h ⊂ {1, . . . , d} of cardinality s,
the set {ah1

i ⊗ · · · ⊗ ahs
i }i is in GLP.
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Let n = (n1, . . . , nd). Let Mr ;n ⊂ S×r be the set of tuples of
n1 × · · · × nd rank-1 tensors a = (A1, . . . ,Ar ) that satisfy:

1 Φr (a) is a smooth point of the semi-algebraic set σ0r (S);

2 Φr (a) is r-identifiable;

3 the derivative daΦr is injective;

4 a is in super GLP;

5 for all i = 1, . . . , r , (Ai )1,...,1 6= 0.

Definition

The set of r-nice tensors is

Nr ;n := Φr (Mr ;n).
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One can prove the following results:

Proposition

Let S be generically r -identifiable. Then, M̂r ;n :=Mr ;n/Sr is a
manifold and the projection is a local diffeomorphism.

Proposition

Let S be generically r -identifiable. Then,

Φr : M̂r ;n → Nr ;n, {A1, . . . ,Ar} → A1 + · · ·+ Ar

is a diffeomorphism. Moreover, Nr ,n is an open dense submanifold
of σ0r (S).
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The inverse of Φr , restricted to the manifold of r -nice tensors, is

τr ;n : Nr ;n → M̂r ;n, A1 + · · ·+ Ar → {A1, . . . ,Ar},

which we call the tensor rank decomposition map.

As τr ;n is a smooth map between manifolds we can apply the
standard framework. Since τr ;n ◦ Φr = IdNr ;n we have at A ∈ Nr ;n

that dAτr ;n ◦ daΦr = IdTaNr ;n , so that

κ[τr ;n](A) = ‖dAτr ;n‖2 = ‖(daΦr )−1‖2.
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The derivative daΦ is seen to be the map

daΦ : TA1S × · · · × TArS → TARn1×···×nd

(Ȧ1, . . . , Ȧr ) 7→ Ȧ1 + · · ·+ Ȧr .

Hence, if Ui is an orthonormal basis of TAiS ⊂ TAiRn1×···×nd , then
the map is represented in coordinates as the matrix

U =
[
U1 U2 · · · Ur

]
∈ Rn1···nd×r dimS

Summarizing, if we are given a CPD a of A, then the condition
number of computing this CPD may be computed as the inverse of
the smallest singular value of U.
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Interpretation

If

A = A1 + · · ·+ Ar =
r∑

i=1

a1
i ⊗ · · · ⊗ ad

i

B = B1 + · · ·+ Br =
r∑

i=1

b1
i ⊗ · · · ⊗ bd

i

are tensors in Rn1×···×nd , then for ‖A − B‖F ≈ 0 we have the
asymptotically sharp bound

min
π∈Sr

√√√√ r∑
i=1

‖Ai − Bπi‖2F︸ ︷︷ ︸
forward error

. κ[τr ;n](A)︸ ︷︷ ︸
condition number

· ‖A − B‖F︸ ︷︷ ︸
backward error
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An algebraic algorithm

In some cases, the CPD of third-order tensors can be computed via
a generalized eigendecomposition (GEVD).

For simplicity, assume that A ∈ Rn×n×n is of rank n. Say

A =
n∑

i=1

ai ⊗ bi ⊗ ci .

The steps are as follows.
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1. Compute the multilinear multiplication

X = (I , I ,QT ) · A :=
n∑

i=1

ai ⊗ bi ⊗ (QTci ) ∈ Rn×n×2

where Q ∈ Rn×2 is a fixed matrix with orthonormal columns.
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2. The two 3-slices X1 and X2 of X are

Xj =
n∑

i=1

〈qj , ci 〉ai ⊗ bi = A diag(qT
j C )BT

where A = [ai ] ∈ Rn×n and likewise for B and C .

Hence, X1X−12 has the following eigenvalue decomposition:

X1X−12 = A diag(qT
1 C ) diag(qT

2 C )−1A−1

from which A can be found as the matrix of eigenvectors.
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3. By a 1-flattening we find

A(1) :=
n∑

i=1

ai (bi ⊗ ci )
T = A(B � C )T ,

where B � C := [bi ⊗ ci ]i ∈ Rn2×n. Computing

A� (A−1A(1))
T = A� (B � C ) = [ai ⊗ bi ⊗ ci ]i ,

solves the (ordered) tensor decomposition problem.
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Let’s perform an experiment in Tensorlab v3.0 with this
decomposition algorithm.

Create the first tensor that comes to mind, a rank-25 random
tensor of size 25× 25× 25:

>> Ut{1} = randn(25,25);

>> Ut{2} = randn(25,25);

>> Ut{3} = randn(25,25);

>> A = cpdgen(Ut);
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Compute A’s decomposition and compare its distance to the input
decomposition, relative to the machine precision ε ≈ 2 · 10−16:

>> Ur = cpd_gevd(A, 25);

>> E = kr(Ut) - kr(Ur);

>> norm( E(:), 2 ) / eps

ans =

8.6249e+04

Of course, this can happen because of a high condition number.
However,

>> kappa = condition_number( Ut )

ans =

2.134
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The only explanation is that there is something wrong with the
algorithm.

Beltrán, Breiding, and V (2018) show that algorithms based on a
reduction to Rn1×n2×2 are numerically unstable: the forward
error produced by the algorithm divided by the backward error is
“much” larger than the condition number, for some inputs.
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Distribution of the condition number

We conceived the existence of this problem after seeing the
distribution of the condition number of random rank-1 tensors

Ai = αiai ⊗ bi ⊗ ci ∈ Rn1×n2×n3

where

αi ∈ R+, ai ∈ Sn1−1 and bi ∈ Sn2−1 are arbitrary, and

the ci ’s are random vectors i.i.d. on the unit sphere Sn3−1.

Informally, we showed, based on Cai, Fan, and Jiang (2013), that

P[κ ≥ α] ≥ P
[

max
1≤i 6=j≤r

1√
1− 〈ci , cj〉

≥ α
]
→ 1− e−Kr

2α1−n3 ,

as r →∞; herein, K is a constant depending only on n3.
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Distribution of the condition number
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1, 000 trials for 20× 20× n tensors.
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Pencil-based algorithms

A pencil-based algorithm (PBA) is an algorithm that computes
the CPD of

A =
r∑

i=1

ai ⊗ bi ⊗ ci ∈ N ∗ ⊂ Rn1×n2×nd

in a particular way, where N ∗ ⊂ Nr ;n is some unspecified
Zariski-open submanifold.2

2See Beltrán, Breiding, and V (2018) for the precise definition. The
definition of a PBA is also more general than the one that I will present next.
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Choose a fixed Q ∈ Rn3×2 with orthonormal columns.

A PBA performs the following computations:

S1. B ← (I , I ,QT ) · A;

S2. {a1, . . . , ar} ← θ̂(B);

S3.a Choose an order A := (a1, . . . , ar );

S3.b (b1 ⊗ c1, . . . ,br ⊗ cr )← (A†A(1))
T ;

S4. output ← π
(
�
(
(a1, . . . , ar ), (b1 ⊗ c1, . . . ,br ⊗ cr )

))
.

Herein, π : S×r → (S×r/Sr ) and � is the Khatri–Rao product:
�(A,B) := (ai ⊗ bi )i .
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Choose a fixed Q ∈ Rn3×2 with orthonormal columns.
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Herein, π : S×r → (S×r/Sr ) and � is the Khatri–Rao product:
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The magic map θ̂ needs to recover the vectors from the first factor
matrix when restricted to Nr ;n1,n2,2:

θ̂|Nr ;n1,n2,2
: Nr ;n1,n2,2 −→ (Sn1−1)×r/Sr

B =
r∑

i=1

ai ⊗ bi ⊗ zi 7−→ {a1, . . . , ar}

Since the input to θ̂ will be the result of a previous numerical
computation, the domain of definition of θ̂ should also encompass
a sufficiently large neighborhood of Nr ;n1,n2,2!

For proving instability, it does not matter what θ̂ computes outside
of Nr ;n1,n2,2.
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For a valid input A ∈ N ∗, let {Ã1, . . . , Ãr} be the CPD (in
floating-point representation) returned by the PBA.

Our proof strategy consists of showing that for every ε > 0 there
exists an open neighborhood Oε ⊂ N ∗ of r -nice tensors such that
the excess factor

ω(A) =
observed forward error due to algorithm

maximum forward error due to problem

:=
minπ∈Sr

√∑r
i=1 ‖Ai − Ãi‖2

κ[τr ;n1,n2,n3 ](A) · ‖A − fl(A)‖F

behaves like a constant times ε−1.
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The maximum forward error of the problem is governed by the
condition number of A.

In an algorithm the error can accumulate in successive steps.

A PBA performs the following computations:

OK B ← (I , I ,QT ) · A;

BAD {a1, . . . , ar} ← θ̂(B);

OK Choose an order A := (a1, . . . , ar );

OK (b1 ⊗ c1, . . . ,br ⊗ cr )← (A†A(1))
T ;

OK output ← π
(
�
(
(a1, . . . , ar ), (b1 ⊗ c1, . . . ,br ⊗ cr )

))
.

The main intuition underpinning our proof is the fact that the
condition number of θ̂ can be very large even when the tensor
decomposition problem has a small condition number.



On the condition number of the tensor rank decomposition

Pencil-based algorithms are unstable

For brevity, let’s drop the rank r and dimensions n1 × n2 × 2 from
the notation.

Consider the following diagram:

N

N × (Sn1−1)×r/Sr M̂

IdN ×θ̂
τ

η̂

Herein, η̂ is any map so that τ = η̂ ◦ (IdN ×θ̂).

Since all involved domains and codomains are manifolds, we have

κ[τ ](B) = ‖dBτ‖2 ≤ ‖dB IdN ×θ̂‖2‖d(B,θ̂(B))η̂‖2

= κ[IdN ×θ̂](B) · κ[η̂](B, θ̂(B))
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Using foregoing idea, we are able to prove a lower on the condition
number of θ̂ at B in terms of κ[τ ](B):

κ[θ̂|N ](B) ≥ κ[τ ](B)

10r
− 1

But we know the right-hand side has a very bad distribution!
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We then show that the neighborhood of the following orthogonally
decomposable (odeco) tensor is problematic:

O =
r∑

i=1

a′i ⊗ b′i ⊗ c′i ,

where a′i (resp b′i ) is an arbitrary orthonormal set of vectors and

C ′ =
2

n3

[
Q⊥ Q

]


n3
2 − 1 1 1
−1 1− n3

2 1
−1 1 1− n3

2
−1 1 1 · · ·

...
...

...
−1 1 1


where [Q⊥ Q] is an orthogonal matrix.
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Odeco tensors like O have the lowest sensitivity to perturbations;
their condition number is always 1.

It is a very bad omen that O is not a valid input for PBAs! Indeed,
the projected tensor is

(I , I ,QT ) · O = − 2

n3
a′1 ⊗ b′1 ⊗

[
1
1

]
+

2

n3

r∑
i=2

a′i ⊗ b′i ⊗
[

1
1

]
,

which has a positive-dimensional family of decompositions,
resulting in a non-unique first factor matrix. This is causes θ̂ to
have condition number ∞.

With some effort it can be shown that the remaining steps of the
PBA cannot sufficiently reduce the sustained error.
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Formally, we showed the following result:

Theorem (Beltrán, Breiding, and V (2018), Theorem 6.1)

There exist a constant k > 0 and a tensor O ∈ Nr ;n1,n2,n3 with the
following properties: For all sufficiently small ε > 0, there exists an
open neighborhood Oε of O, such that for all tensors A ∈ Oε we
have

1 A ∈ N ∗ is a valid input for a PBA, and

2 ω(A) ≥ kε−1.

In other words, the forward error produced by a PBA can be larger
than the maximum forward error expected from the tensor
decomposition problem by an arbitrarily large factor.
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The instability of the algorithm leads to an excess factor ω on top
of the condition number of the computational problem:
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The excess factor ω in the neighborhood of the bad odeco tensor
from our proof behaves exactly as the theory predicts:
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Conclusions

Take-away story:

1 Tensors are conjectured to be generically r -identifiable for all
strictly subgeneric r .

2 The condition number of the CPD measures the stability of
the unique rank-1 tensors.

3 Reduction to a matrix pencil yields numerically unstable
algorithms for computing CPDs.
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Further reading

Beltrán, Breiding, and V, Pencil-based algorithms for tensor rank
decomposition are not stable, arXiv:1807.04159, 2018.

Beltrán, Breiding, and V, On the average condition number of the
tensor rank decomposition, In preparation.

Breiding and V, The condition number of join decompositions,
SIMAX, 2018.

Breiding and V, On the average condition number of tensor rank
decompositions, arXiv:1801.01673, 2018.
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Grazie per l’attenzione!
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