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Download Tensorlab at https://www.tensorlab.net. Download the Matlab
code for computing the geometric condition number and the pencil-based algorithm at
http://personal-homepages.mis.mpg.de/breiding/tensors_cond_and_pba.zip.
Uncompress the archive and add the files to the current Matlab session by using
addpath.

Recall that you can use help x or doc x to learn more about x in Matlab.

Exercise 1

1. Generate a random real 3 × 3 × 2 tensor T of rank 3 by sampling the elements
of the factor matrices A ∈ R3×3, B ∈ R3×3, C ∈ R2×3 independently from a stan-
dard normal distribution. In Tensorlab the tensor with factor matrices A,B,C is
generated with T = cpdgen({A,B,C}). Compute the rank-3 CPD of T by using
cpd(T,3). What is the output of cpd? Compare the tensor represented by the
output to T by computing the Frobenius norm of their difference using frob.

2. Implement a function to compute the Kruskal rank of an m × n matrix. How do
you numerically compute the rank of a matrix? Is your strategy trustworthy?

3. Compute the Kruskal ranks of the factor matrices. Is the decomposition unique?

Exercise 2

1. Implement an algorithm for computing the multilinear multiplication

(M1,M2,M3) · T

for T ∈ Rn1×n2×n3 and Mk ∈ Rmk×nk . Tensorlab’s tens2mat and mat2tens func-
tions can be helpful. What is are the dimensions of the output tensor?

2. Implement an algorithm for computing the higher-order singular value decompo-
sition (HOSVD), using the svd function in Matlab; use the compact SVD (called
“economy size” by Matlab) where possible. The output should be the core tensor,
the basis matrices, and the multilinear rank as output. You can test the correctness
of your implementation by comparing your output to Tensorlab’s mlsvd function.
What is the multilinear rank of a random real 16 × 8 × 18 tensor? What is the
multilinear rank of a random real 16× 8× 18 tensor of rank 3? Why?
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Exercise 3

Create a 50× 50× 2500 tensor T of multilinear rank (2, 2, 2). Compute the standard
T-HOSVD and the ST-HOSVD of T and compare the speed of the computations. In
this context, the Matlab functions tic and toc may be useful, as well as Tensorlab’s
mlsvd function. What are the computational complexities of T-HOSVD and ST-
HOSVD when applied to n× n× n2 tensors? Recall that computing the SVD of an
m× n matrix has complexity O(min{mn2, nm2}).

Exercise 4

1. Write a function that evaluates the forward error

min
π∈Sr

‖A�B � C − (A′ �B′ � C ′)Pπ‖F ,

where Sr is the group of permutations on r elements and Pπ is the permutation
matrix (whose columns are a permutation of the columns of an r × r identity
matrix) representing π, between two sets of rank-1 tensors, given by their factor
matrices (A,B,C) and (A′, B′, C ′).

2. Generate the 4× 3× 3 tensor T with factor matrices

A =


1 0 0
0 1 1
0 1 1
1 0 0

 , B =

0 0 0
1 1 1
1 −1 1

 , C =

1 1 0
0 0 1
0 0 0

 .
This tensor has rank 3. Compute a rank-2 approximation of T in Tensorlab using
cpd(T,2). Investigate the output. What are the norms of the rank-1 summands?
What is the norm of the tensor? Do you notice anything curious about the factor
matrices? Also compute the condition number of the output using cpdgeomcond.
Can you conclude that the computed rank-1 tensors are close to the rank-1 tensors
in a CPD of T ?

3. Generate the 4× 3× 3 tensor Tk with factor matrices

Ak =


1 0 2−k

0 1 1
0 1 1
1 0 0

 , Bk =

2−k 0 0
1 1 1
1 −1 1

 , Ck =

 1 1 0
0 0 1

2−k 0 0

 .
Consider k ∈ {1, 2, 4, 8, 16}. Check numerically if Tk is 3-identifiable according to
Kruskal’s lemma. Compute the factor matrices (A′k, B

′
k, C

′
k) of this unique rank-3

CPD of T in Tensorlab using cpd. How large is the Euclidean distance between Tk
and the tensor represented by the factor matrices (A′k, B

′
k, C

′
k)? How large is the

forward error between the rank-1 tensors? Can you explain this with the condition
number of the CPD using cpdgeomcond?



Exercise 5

Generate 20 random real 2× 2 matrices whose elements are i.i.d. standard normally
distributed. Compute their ranks. Generate 100 random real 2 × 2 × 2 tensors by
sampling their elements i.i.d. from a standard normal distribution. How would you
compute their ranks? Compute their ranks. Is anything out of the ordinary? What
is the empirical distribution? Can you guess the probability that the rank is 2?

Exercise 6

Create a (random) orthogonal matrix Q ∈ R5×2. For instance, this can be done by
sampling A ∈ R5×2 with i.i.d. standard normal entries and passing it to Matlab’s orth
function. Create a random tensor T ∈ R7×6×5 of rank 3 (as in exercise 1). Compute
the CPD of T using the so-called pencil-based algorithm cpd_pba using the matrix Q

for the projection: cpd pba(T, 3, Q).
Now, let U ∈ R5×5 be an orthogonal matrix whose last two columns are Q. Sample

orthogonal matrices A ∈ R7×3, B ∈ R6×3 and put

Ck := 0.4 · U


1.5 1 1
−1 −1.5 1
−1 1 −1.5
−1 1 1

−1 + 10−k 1 1

 .
Let Sk be the tensor with factor matrices A,B,Ck. Compute the condition number
of this CPD of Sk using cpdgeomcond. Do you expect problems when computing the
CPD?

Run cpd pba(Sk, 3, Q) for k ∈ {6, 8, 10, 12} and compare the result with the
output of cpd. Is there something strange? Which algorithm is more accurate?

Finally, compute rank-3 CPDs of T, (I7, I6, Q
T ) ·T, Sk and (I7, I6, Q

T ) ·Sk, where In
is the n× n identity matrix. Compare the condition numbers of the decompositions
you get using cpdgeomcond. Do you recognize any pattern? Based on the implemen-
tation of cpd_pba can you conjecture what goes wrong? What is most likely the cause
for the observed problems: the mathematical decomposition problem, the algorithm,
Matlab, or the computer?

Exercise 7

Get the data set from http://www.models.life.ku.dk/nwaydata1. This data set
is a 5 × 51 × 201 tensor T. The tensor T contains data from 5 experiments: three
amino acids tryptophan (Trp), tyrosine (Tyr), phenylalanine (Phe) were dissolved
in phosphate buffered water (with different amounts in each of the 5 experiments).
The resulting substance was measured by fluorescence (excitation 250-300 nm and
emission 250-450 nm, 1 nm intervals) on a spectrofluorometer.

1. Visualize the tensor by running voxel3(T).

2. What do you expect to be the rank of T? Verify your assertion by first computing
an ST-HOSVD compression to rank (min{5, 2r}, 2r, 2r) and then approximating
the core tensor by a rank-r CPD of using cpd. What is a suitable r?
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3. Perform the same experiment but this time by computing a rank-r approxima-
tion directly from the large tensor T. Do this by creating an options structure
opts = []; opts.Compression = false; and then compute cpd(T, r, opts),
where r is the desired rank. Do you get the same results? Which technique is
faster?

4. Have a look at output factor matrices from your computation. Compute the
Kruskal ranks. Is the decomposition unique?

5. Compute the condition number of your decomposition.

6. Do you trust the result of the computation? Why or why not?

7. How should the rank-1 summands be interpreted?

8. Prove that the computations in step 1 and 2 are equivalent if T has a rank-r CPD.


