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Polynomial Signature Varieties

Consider paths X : [0, 1]→ Rd whose coordinates are polynomials
of degree ≤ m. We identify paths with d ×m-matrices X = (xij):

Xi (t) = xi1t + xi2t
2 + xi3t

3 + · · ·+ ximt
m.

The kth signature σ(k)(X ) is a d×d× · · ·×d tensor. It can be
computed by multiplying our favorite m×m× · · ·×m tensor

σk(Cmono) =
[
i1
i1
· i2
i1+i2
· i3
i1+i2+i3

· · · ik
i1+i2+···+ik

]

on all k sides with the d ×m matrix X .

The polynomial signature variety Pd ,k,m is the
Zariski closure of the image of the rational map

σ(k) : Pdm−1 99K Pdk−1 , X 7→ σ(k)(X ).

Remark: If m ≤ d then this is the closure of a GL(d) orbit in (Cd)⊗m.
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Example: Quadratic Paths in 3-Space

The third signature variety P3,3,2 for quadratic paths in R3

lies in the universal variety U3,3 for 3×3×3 tensors.

.P3,3,2 has dimension 5, degree 90, and is cut out by 162 quadrics in
P25. Recall that U3,3 has dimension 13, degree 24, and 81 quadrics.

The linear span of P3,3,2 is the hyperplane P25 defined by

σ123 − σ132 − σ213 + σ231 + σ312 − σ321 = 0.

This linear form is the signed volume of the convex hull of a path.
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Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by d ×m matrices X .

Their steps are the column vectors X1, . . . ,Xm ∈ Rd . The path is

t 7→ X1 + · · ·+ Xi−1 + (mt − i + 1) · Xi for i−1
m ≤ t ≤ i

m .

The kth signature σ(k)(X ) is a d×d× · · ·×d tensor. It can be
computed by multiplying the upper triangular m×m× · · ·×m
tensor σk(Caxis) on all k sides with the d ×m matrix X .

The piecewise linear signature variety Ld ,k,m is the
Zariski closure of the image of the rational map

σ(k) : Pdm−1 99K Pdk−1 , X 7→ σ(k)(X ).

Remark: If m ≤ d then this is the closure of a GL(d) orbit in (Cd)⊗m.
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Few Steps in 3-Space

σ(3)(X ) =
1

6




0 0 0 0 0 0 0 6 0
0 0 0 0 0 −6 −6 3 3
0 6 0 −6 3 −3 0 0 1






Parametrizations
By Chen (1954), the n-step signature of a piecewise linear path X
is given by the tensor product of tensor exponentials:

σ≤n(X ) = exp(X1)⊗ exp(X2)⊗ · · · ⊗ exp(Xm) ∈ T n(Rd).

Corollary

The kth signature tensor of X equals

σ(k)(X ) =
∑

τ

m∏

`=1

1

| τ−1(`)| ! · Xτ(1) ⊗ Xτ(2) ⊗ Xτ(3) ⊗ · · · ⊗ Xτ(k).

Sum is over weakly increasing functions τ : {1, . . . , k} → {1, . . . ,m}.

Example (k = 3)

The third signature is the d×d×d tensor σ(3)(X ) =

1

6
·
m∑

i=1

X⊗3
i +

1

2
·
∑

1≤i<j≤m

(
X⊗2
i ⊗Xj + Xi⊗X⊗2

j

)
+

∑

1≤i<j<l≤m
Xi⊗Xj⊗Xk .
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Inclusions

Theorem
For any d and any k , we have the following chains of inclusions
between the kth Veronese variety and the kth universal variety:

νk(Pd−1) = Ld,k,1 ⊂ Ld,k,2 ⊂ · · · ⊂ Ld,k,M−1 ⊂ Ld,k,M = Ud,k ⊂ Pdk−1

νk(Pd−1) = Pd,k,1 ⊂ Pd,k,2 ⊂ · · · ⊂ Pd,k,M′−1 ⊂ Pd,k,M′ = Ud,k ⊂ Pdk−1

Here M and M ′ are constants that depend only on d and k.

Remark

I Dimension count yields conjectured values for M,M ′. More later.

I The number m is similar to tensor rank, where a chain
of secant varieties eventually fills the ambient space.



Similarities and Differences
Polynomial and piecewise linear signature varieties agree for matrices:

Ld,2,m = Pd,2,m.

These are d×d matrices P+Q, where P is symmetric of rank ≤ 1,

and Q is skew-symmetric, such that rank
(
[P Q ]

)
≤ m.

Theorem
Two-segment paths and quadratic paths in R2 have different
signature varieties L2,k,2 6= P2,k,2 in P2k−1 for k ≥ 3.

Example (k = 4)
The threefolds P2,4,2 and L2,4,2 are orbit closures of GL(2) in P15.

We use invariant theory to distinguish these orbits.

The space of SL(2)-invariant linear forms on (R2)⊗4 is spanned by

`1 = σ1212 − σ1221 − σ2112 + σ2121

and `2 = σ1122 − σ1221 − σ2112 + σ2211.

Their ratio `1/`2 is a rational function on P15 that is constant on orbits.
It takes value 0 on Caxis and value 1/5 on Cmono.
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Data
We computed the polynomial and piecewise linear
signature varieties for many tensor formats:

d k m amb dim deg gens
2 3 2 7 3 6 9
2 3 ≥ 3 7 4 4 6
2 4 2 14 3 24 55
2 4 3 15 5 192P , 64L (33P , 34L), (0P , 3L), ?
2 4 ≥ 4 15 7 12 33
2 5 2 25 3 60 220
2 5 3 31 5 1266P , 492L (160P , 185L), ?
2 6 2 41 3 120 670
2 6 3 62 5 4352P , 1920L (945P , 1056L), ?
3 3 2 25 5 90 162
3 3 3 26 8 756P , 396L (83P , 91L) , ?
3 4 2 65 5 600 1536
3 4 3 80 8 ? (1242P , 1374L) , ?

Table: Invariants of the varieties Pd,k,m and Ld,k,m



A Question of Lyons and Xu

Proposition

There is an axis path with m = 8 steps in alternating axis
directions in the plane R2 and length l = 14 < 16 = 2k+1

whose first k = 3 signature tensors are all zero.

Figure 1: Left: the path with 8 steps and length 14 from Proposition 5.11; Right: path
with 12 steps and length 16 from Lyons and Xu [35]. Both paths have the first 3 signature
levels equal to zero. The Lévy areas are marked with the corresponding sign.

5.4 Rough Paths and the Rough Veronese

We now finally connect our algebro-geometric study to the theory of rough paths which
underlies much recent progress in stochastic analysis. This will lead us to a rough version of
the classical Veronese variety that represents linear paths (m = 1), as in Remark 5.2 (a).

Every smooth path X in Rd lifts to a path in the Lie group Gm(Rd), where t 2 [0, 1] is
now mapped to the step-m signature of X|[0,t]. In other words, we may replace the definite
integrals in (1) and (2) with indefinite integrals that end at t instead of 1. We can also
consider the same integrals starting at s and ending at t. The signature tensors of the
resulting paths X|[s,t] are functions of s and t that satisfy the following Hölder condition:

�� �(k)(X|[s,t])
�� . | t � s |k for 0  s < t  1 and k = 1, . . . , m. (44)

In Lyons’ rough path analysis (see e.g. [18, 20, 30] and references therein) this inequality now
turns into a definition. A rough path of order m is any path in the Lie group Gm(Rd) that
satisfies (44) but with the exponent k replaced with k/m. Given any rough path of order m,
Lyons’ Extension Theorem provides a unique lift to a rough path of order n, for all n > m,
such that the analytic estimate (44) remains valid for that extension. Every such rough path
has a well-defined unique signature; that is, kth signature tensors for any positive integer k.

Theorem 5.6 furnishes two interpolations Ld,k,• and Pd,k,• between the Veronese ⌫k(Pd�1)
and the universal variety Ud,k for fixed d, k. In what follows we introduce a third such chain:

⌫k(Pd�1) = Rd,k,1 ⇢ Rd,k,2 ⇢ · · · ⇢ Rd,k,k = Ud,k. (45)

The rough Veronese variety Rd,k,m parametrizes the kth signature tensors of the following
family of order m rough paths, indexed by Lie polynomials of degree m:

XL : t 7! Xt = exp(tL) , L 2 Liem(Rd) .

This is a path in the Lie group Gm(Rd). It satisfies the Hölder condition |XL
s,t| . |t � s|k/m

for k  m, with increments XL
s,t = (XL

s )�1 ⌦XL
t taken w.r.t. the group structure in Gm(Rd).

28

Answer to Question 2.5 in [T. Lyons and W. Xu: Hyperbolic development

and inversion of signature, J. Funct. Anal. 272 (2017) 2933–2955]



Axis Paths
For axis paths, each step Xi is a multiple ai · eνi of a basis vector.

Record the step sequence ν = (ν1, ν2, . . . , νm) ∈ {1, 2, . . . , d}m.

The kth signature tensors of such axis paths form a subvariety
Aν,k of Ld ,k,m. It is parametrized by the lengths a1, a2, . . . , am.

A current project by Laura Colmenajero and Mateusz Michalek

studies the signature varieties Aν,k . Stay tuned for their results.

Example: For d = 3 and ν = (1, 2, 3) we get signature matrices

σ(2)(X ) =
1

2




a2
1 2a1a2 2a1a3

0 a2
2 2a2a3

0 0 a2
3




Thus the signature variety Aν,2 is a Veronese surface in P5 ⊂ P8.

Exercise: Compute Aν,4 ⊂ P15 for d = 2,m ≤ 7, and ν = (1, 2, 1, 2, . . .).
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Identifiability

Counting parameters gives an upper bound on the dimension of
our signature varieties: λd,k = # Lyndon words

dim(Ld ,k,m) ≤ min{λd ,k − 1, dm − 1},
and dim(Pd ,k,m) ≤ min{λd ,k − 1, dm − 1}.

If the dimension equals dm − 1 then the variety is algebraically
identifiable. This means that, for some r ∈ N, the map from
d×m matrices X to signature tensors σ(k)(X ) is r -to-1. If r = 1
then the map is birational, and the variety is rationally identifiable.

Conjecture

I Both inequalities are equalities provided d ,m ≥ 2 and k ≥ 3.

I Stabilization constants for filling the universal variety are

M = M ′ =

⌈
λd ,k
d

⌉
.



Filling the Universal Variety

d \ k 3 4 5 6 7 8 9

2 3 4 7 12 21 36 64

3 5 11 27 66 170 440 1168

4 8 23 74 241 826 2866 10146

5 11 41 166 682 2914 12664 56064

6 16 68 327 1616 8281 43246 229866

Table: The value M = M ′ at which the signature varieties stabilize.

Example (d = 3, k = 4,M = 11)

Consider 3× 3× 3× 3 signature tensors for paths in R3. The
universal variety U3,4 has dimension 31 and degree 672 in P80.

The signature varieties P3,4,10 and L3,4,10 have dimension 30.
They are divisors in

P3,4,11 = L3,4,11 = U3,4.



At the Borderline
Identifiability is delicate for λd,k = md , when the signature variety

exactly fills the universal variety. We expect algebraic identifiability.

Example (d = 2, k = 4,M = 4)

The 7-dim’l variety P2,4,4 = L2,4,4 = U2,4 has degree 12 in P15.
Have two parametrizations from the P7 of 2×4 matrices. The map
from quartic paths is 48-to-1. From four-segment paths it is 4-to-1.

Consider the four-segment path in R2 given by

X =

[
29 15 13 2
23 26 6 27

]

Three other paths have the same 2× 2× 2× 2 signature tensor:

[
36.74838 −17.80169 37.75532 2.29799
27.39596 −9.82926 40.23084 24.20246

]
,

[
102.16286 −131.13298 85.92484 2.04528
104.55786 −136.84738 86.56467 27.72484

]
,

[
38.53237 38.8057 −79.20533 60.86735
28.69523 82.7734 −147.7839 118.3152

]
.



Rational Identifiability

We believe that low-complexity paths can be recovered from their
signature tensors whenever this is permitted by the dimensions.

Conjecture

Let k ≥ 3 and take m strictly less than the threshold M at which
the universal variety is expected to be filled. Then both of the
signature varieties Pd ,k,m and Ld ,k,m are rationally identifiable.

Current best results:

Theorem

I Rational identifiability holds for m ≤ 7

I Algebraic identifiability holds for m ≤ 30.

I Identifiability holds for Ld ,k,m provided m ≤ d .

This relies on reduction to 3-way tensors.



Reductions

Proposition

Fix integers d , k ,m that satisfy d ≥ m ≥ 1 and k ≥ 3.

(a) If Lm,3,m is rationally (resp. algebraically) identifiable
then Ld ,k,m is as well.

(b) If Pm,3,m is rationally (resp. algebraically) identifiable
then Pd ,k,m is as well.

Proof.
For the reduction from k to 3 we note that σ(k)(X ) determines
σ(3)(X ) up to a multiplicative constant, by using shuffle relations.

The reduction from (d ,m) to (m,m) is based on tensor methods.
It relies on a variant of the Tucker decomposition (Kruskal’s
Theorem). The core tensors are σk(Cmono) and σk(Caxis).



Invitation to read...
Learning Paths from Signature Tensors

new paper with Max Pfeffer and Anna Seigal

Abstract: Matrix congruence extends naturally to the setting of tensors.

We apply methods from tensor decomposition, algebraic geometry and

numerical optimization to this group action. Given a tensor in the orbit

of another tensor, we compute a matrix which transforms one to the

other. Our primary application is an inverse problem from stochastic

analysis: the recovery of paths from their signature tensors of order three.

We establish identifiability results and recovery algorithms for piecewise

linear paths, polynomial paths, and generic dictionaries. A detailed

analysis of the relevant condition numbers is presented. We also compute

the shortest path with a given signature tensor.



Next summer in Bern

SIAM AG 19 Proposed Minisymposia

Algebraic methods in stochastic analysis
Organizers: Carlos Amendola and Anna Seigal

Signature tensors of paths
Organizers: Joscha Diehl and Francesco Galuppi


