Varieties of Signature Tensors Second Lecture

Bernd Sturmfels MPI Leipzig, UC Berkeley and TU Berlin

Polynomial Signature Varieties

Consider paths $X : [0, 1] \to \mathbb{R}^d$ whose coordinates are polynomials of degree $\leq m$. We identify paths with $d \times m$ -matrices $X = (x_{ij})$:

$$X_i(t) = x_{i1}t + x_{i2}t^2 + x_{i3}t^3 + \cdots + x_{im}t^m$$

The *k*th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying our favorite $m \times m \times \cdots \times m$ tensor

$$\sigma^{k}(C_{\text{mono}}) = \left[\frac{i_{1}}{i_{1}} \cdot \frac{i_{2}}{i_{1}+i_{2}} \cdot \frac{i_{3}}{i_{1}+i_{2}+i_{3}} \cdots \frac{i_{k}}{i_{1}+i_{2}+\dots+i_{k}}\right]$$

on all k sides with the $d \times m$ matrix X.

Polynomial Signature Varieties

Consider paths $X : [0, 1] \to \mathbb{R}^d$ whose coordinates are polynomials of degree $\leq m$. We identify paths with $d \times m$ -matrices $X = (x_{ij})$:

$$X_i(t) = x_{i1}t + x_{i2}t^2 + x_{i3}t^3 + \cdots + x_{im}t^m$$

The *k*th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying our favorite $m \times m \times \cdots \times m$ tensor

$$\sigma^{k}(\mathcal{C}_{\text{mono}}) = \left[\frac{i_{1}}{i_{1}} \cdot \frac{i_{2}}{i_{1}+i_{2}} \cdot \frac{i_{3}}{i_{1}+i_{2}+i_{3}} \cdots \frac{i_{k}}{i_{1}+i_{2}+\cdots+i_{k}}\right]$$

on all k sides with the $d \times m$ matrix X.

The *polynomial signature variety* $\mathcal{P}_{d,k,m}$ is the Zariski closure of the image of the rational map

$$\sigma^{(k)} : \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^{k}-1}, \ X \mapsto \sigma^{(k)}(X).$$

Remark: If $m \leq d$ then this is the closure of a $\operatorname{GL}(d)$ orbit in $(\mathbb{C}^d)^{\otimes m}$.

Example: Quadratic Paths in 3-Space

The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^3 lies in the universal variety $\mathcal{U}_{3,3}$ for $3 \times 3 \times 3$ tensors.

 $\mathcal{P}_{3,3,2}$ has dimension 5, degree 90, and is cut out by 162 quadrics in $\mathbb{P}^{25}.$ Recall that $\mathcal{U}_{3,3}$ has dimension 13, degree 24, and 81 quadrics.

Example: Quadratic Paths in 3-Space

The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^3 lies in the universal variety $\mathcal{U}_{3,3}$ for $3 \times 3 \times 3$ tensors.

The linear span of $\mathcal{P}_{3,3,2}$ is the hyperplane \mathbb{P}^{25} defined by

 $\sigma_{123} - \sigma_{132} - \sigma_{213} + \sigma_{231} + \sigma_{312} - \sigma_{321} = 0.$

This linear form is the signed volume of the convex hull of a path.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by $d \times m$ matrices X. Their steps are the column vectors $X_1, \ldots, X_m \in \mathbb{R}^d$. The path is

$$t \mapsto X_1 + \dots + X_{i-1} + (mt - i + 1) \cdot X_i$$
 for $\frac{i-1}{m} \le t \le \frac{i}{m}$

The *k*th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying the upper triangular $m \times m \times \cdots \times m$ tensor $\sigma^k(C_{axis})$ on all *k* sides with the $d \times m$ matrix *X*.

Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by $d \times m$ matrices X. Their steps are the column vectors $X_1, \ldots, X_m \in \mathbb{R}^d$. The path is

$$t \mapsto X_1 + \dots + X_{i-1} + (mt - i + 1) \cdot X_i$$
 for $\frac{i-1}{m} \le t \le \frac{i}{m}$

The *k*th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying the upper triangular $m \times m \times \cdots \times m$ tensor $\sigma^k(C_{axis})$ on all *k* sides with the $d \times m$ matrix *X*.

The *piecewise linear signature variety* $\mathcal{L}_{d,k,m}$ is the Zariski closure of the image of the rational map

$$\sigma^{(k)} : \mathbb{P}^{dm-1} \dashrightarrow \mathbb{P}^{d^{k}-1}, \ X \mapsto \sigma^{(k)}(X).$$

Remark: If $m \leq d$ then this is the closure of a GL(d) orbit in $(\mathbb{C}^d)^{\otimes m}$.

Few Steps in 3-Space

$$\sigma^{(3)}(X) = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & -6 & -6 & 3 & 3 \\ 0 & 6 & 0 & -6 & 3 & -3 & 0 & 0 & 1 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Parametrizations

By Chen (1954), the *n*-step signature of a piecewise linear path X is given by the tensor product of tensor exponentials:

 $\sigma^{\leq n}(X) = \exp(X_1) \otimes \exp(X_2) \otimes \cdots \otimes \exp(X_m) \in T^n(\mathbb{R}^d).$

Parametrizations

By Chen (1954), the *n*-step signature of a piecewise linear path X is given by the tensor product of tensor exponentials:

$$\sigma^{\leq n}(X) = \exp(X_1) \otimes \exp(X_2) \otimes \cdots \otimes \exp(X_m) \in T^n(\mathbb{R}^d).$$

Corollary

The kth signature tensor of X equals

$$\sigma^{(k)}(X) = \sum_{\tau} \prod_{\ell=1}^{m} \frac{1}{|\tau^{-1}(\ell)|!} \cdot X_{\tau(1)} \otimes X_{\tau(2)} \otimes X_{\tau(3)} \otimes \cdots \otimes X_{\tau(k)}.$$

Sum is over weakly increasing functions $\tau: \{1, \dots, k\} \rightarrow \{1, \dots, m\}$.

Example (k = 3)The third signature is the $d \times d \times d$ tensor $\sigma^{(3)}(X) =$

$$\frac{1}{6} \cdot \sum_{i=1}^{m} X_{i}^{\otimes 3} + \frac{1}{2} \cdot \sum_{1 \leq i < j \leq m} \left(X_{i}^{\otimes 2} \otimes X_{j} + X_{i} \otimes X_{j}^{\otimes 2} \right) + \sum_{1 \leq i < j < l \leq m} X_{i} \otimes X_{j} \otimes X_{k}.$$

Inclusions

Theorem

For any d and any k, we have the following chains of inclusions between the kth Veronese variety and the kth universal variety:

$$\nu_{k}(\mathbb{P}^{d-1}) = \mathcal{L}_{d,k,1} \subset \mathcal{L}_{d,k,2} \subset \cdots \subset \mathcal{L}_{d,k,M-1} \subset \mathcal{L}_{d,k,M} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^{k}-1}$$
$$\nu_{k}(\mathbb{P}^{d-1}) = \mathcal{P}_{d,k,1} \subset \mathcal{P}_{d,k,2} \subset \cdots \subset \mathcal{P}_{d,k,M'-1} \subset \mathcal{P}_{d,k,M'} = \mathcal{U}_{d,k} \subset \mathbb{P}^{d^{k}-1}$$

Here M and M' are constants that depend only on d and k.

Remark

- ► Dimension count yields conjectured values for M, M'. More later.
- The number m is similar to tensor rank, where a chain of secant varieties eventually fills the ambient space.

Similarities and Differences

Polynomial and piecewise linear signature varieties agree for matrices:

$$\mathcal{L}_{d,2,m} = \mathcal{P}_{d,2,m}.$$

These are $d \times d$ matrices P+Q, where P is symmetric of rank ≤ 1 , and Q is skew-symmetric, such that $rank([PQ]) \leq m$.

Theorem

Two-segment paths and quadratic paths in \mathbb{R}^2 have different signature varieties $\mathcal{L}_{2,k,2} \neq \mathcal{P}_{2,k,2}$ in \mathbb{P}^{2^k-1} for $k \geq 3$.

Similarities and Differences

Polynomial and piecewise linear signature varieties agree for matrices:

$$\mathcal{L}_{d,2,m} = \mathcal{P}_{d,2,m}.$$

These are $d \times d$ matrices P+Q, where P is symmetric of rank ≤ 1 , and Q is skew-symmetric, such that $rank([PQ]) \leq m$.

Theorem

Two-segment paths and quadratic paths in \mathbb{R}^2 have different signature varieties $\mathcal{L}_{2,k,2} \neq \mathcal{P}_{2,k,2}$ in \mathbb{P}^{2^k-1} for $k \geq 3$.

Example (k = 4)

The threefolds $\mathcal{P}_{2,4,2}$ and $\mathcal{L}_{2,4,2}$ are orbit closures of $\mathrm{GL}(2)$ in \mathbb{P}^{15} . We use invariant theory to distinguish these orbits.

The space of $\mathrm{SL}(2)\text{-invariant}$ linear forms on $(\mathbb{R}^2)^{\otimes 4}$ is spanned by

$$\ell_1 = \sigma_{1212} - \sigma_{1221} - \sigma_{2112} + \sigma_{2121}$$

and
$$\ell_2 = \sigma_{1122} - \sigma_{1221} - \sigma_{2112} + \sigma_{2211}$$

Their ratio ℓ_1/ℓ_2 is a rational function on \mathbb{P}^{15} that is constant on orbits. It takes value 0 on C_{axis} and value 1/5 on C_{mono} .

Data

We computed the polynomial and piecewise linear signature varieties for many tensor formats:

d	k	т	amb	dim	deg	gens
2	3	2	7	3	6	9
2	3	≥ 3	7	4	4	6
2	4	2	14	3	24	55
2	4	3	15	5	$192^{\mathcal{P}}, 64^{\mathcal{L}}$	$(33^{\mathcal{P}}, 34^{\mathcal{L}}), (0^{\mathcal{P}}, 3^{\mathcal{L}}), ?$
2	4	<u>≥</u> 4	15	7	12	33
2	5	2	25	3	60	220
2	5	3	31	5	$1266^{\mathcal{P}}$, $492^{\mathcal{L}}$	$(160^{\mathcal{P}}, 185^{\mathcal{L}})$, ?
2	6	2	41	3	120	670
2	6	3	62	5	$4352^{\mathcal{P}}$, $1920^{\mathcal{L}}$	$(945^{\mathcal{P}}, 1056^{\mathcal{L}}), ?$
3	3	2	25	5	90	162
3	3	3	26	8	$756^{\mathcal{P}}, 396^{\mathcal{L}}$	$(83^{\mathcal{P}},91^{\mathcal{L}})$, ?
3	4	2	65	5	600	1536
3	4	3	80	8	?	$(1242^{\mathcal{P}},1374^{\mathcal{L}})$, ?

Table: Invariants of the varieties $\mathcal{P}_{d,k,m}$ and $\mathcal{L}_{d,k,m}$

・ロト・西ト・西ト・西ト・日・

A Question of Lyons and Xu

Proposition

There is an axis path with m = 8 steps in alternating axis directions in the plane \mathbb{R}^2 and length $l = 14 < 16 = 2^{k+1}$ whose first k = 3 signature tensors are all zero.

Answer to Question 2.5 in [T. Lyons and W. Xu: *Hyperbolic development* and inversion of signature, J. Funct. Anal. **272** (2017) 2933–2955]

Axis Paths

For axis paths, each step X_i is a multiple $a_i \cdot e_{\nu_i}$ of a basis vector. Record the step sequence $\nu = (\nu_1, \nu_2, \dots, \nu_m) \in \{1, 2, \dots, d\}^m$.

The *k*th signature tensors of such axis paths form a subvariety $\mathcal{A}_{\nu,k}$ of $\mathcal{L}_{d,k,m}$. It is parametrized by the lengths a_1, a_2, \ldots, a_m .

A current project by Laura Colmenajero and Mateusz Michalek studies the signature varieties $A_{\nu,k}$. Stay tuned for their results.

Axis Paths

For *axis paths*, each step X_i is a multiple $a_i \cdot e_{\nu_i}$ of a basis vector. Record the step sequence $\nu = (\nu_1, \nu_2, \dots, \nu_m) \in \{1, 2, \dots, d\}^m$.

The kth signature tensors of such axis paths form a subvariety $\mathcal{A}_{\nu,k}$ of $\mathcal{L}_{d,k,m}$. It is parametrized by the lengths a_1, a_2, \ldots, a_m .

A current project by Laura Colmenajero and Mateusz Michalek studies the signature varieties $\mathcal{A}_{\nu,k}$. Stay tuned for their results.

Example: For d = 3 and $\nu = (1, 2, 3)$ we get signature matrices

$$\sigma^{(2)}(X) = rac{1}{2} egin{pmatrix} a_1^2 & 2a_1a_2 & 2a_1a_3 \ 0 & a_2^2 & 2a_2a_3 \ 0 & 0 & a_3^2 \end{pmatrix}$$

Thus the signature variety $\mathcal{A}_{\nu,2}$ is a Veronese surface in $\mathbb{P}^5 \subset \mathbb{P}^8$.

Exercise: Compute $\mathcal{A}_{\nu,4} \subset \mathbb{P}^{15}$ for $d = 2, m \leq 7$, and $\nu = (1, 2, 1, 2, ...)$. ・ロト・日本・モート モー うへぐ

Identifiability

Counting parameters gives an upper bound on the dimension of our signature varieties: $\lambda_{d,k} = \#$ Lyndon words

$$\begin{array}{rcl} \dim(\mathcal{L}_{d,k,m}) &\leq & \min\{\lambda_{d,k}-1,dm-1\},\\ \mathrm{and} & & \dim(\mathcal{P}_{d,k,m}) &\leq & \min\{\lambda_{d,k}-1,dm-1\}. \end{array}$$

If the dimension equals dm - 1 then the variety is algebraically identifiable. This means that, for some $r \in \mathbb{N}$, the map from $d \times m$ matrices X to signature tensors $\sigma^{(k)}(X)$ is r-to-1. If r = 1 then the map is birational, and the variety is rationally identifiable.

Conjecture

- Both inequalities are equalities provided $d, m \ge 2$ and $k \ge 3$.
- Stabilization constants for filling the universal variety are

$$M = M' = \left\lceil \frac{\lambda_{d,k}}{d} \right\rceil$$

Filling the Universal Variety

$d \setminus k$	3	4	5	6	7	8	9
2	3	4	7	12	21	36	64
3	5	11	27	66	170	440	1168
4	8	23	74	241	826	2866	10146
5	11	41	166	682	2914	12664	56064
6	16	68	327	1616	8281	43246	229866

Table: The value M = M' at which the signature varieties stabilize.

Example (d = 3, k = 4, M = 11)

Consider $3 \times 3 \times 3 \times 3$ signature tensors for paths in \mathbb{R}^3 . The universal variety $\mathcal{U}_{3,4}$ has dimension 31 and degree 672 in \mathbb{P}^{80} .

The signature varieties $\mathcal{P}_{3,4,10}$ and $\mathcal{L}_{3,4,10}$ have dimension 30. They are divisors in

$$\mathcal{P}_{3,4,11} = \mathcal{L}_{3,4,11} = \mathcal{U}_{3,4}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At the Borderline

Identifiability is delicate for $\lambda_{d,k} = md$, when the signature variety exactly fills the universal variety. We expect algebraic identifiability.

Example (d = 2, k = 4, M = 4)

The 7-dim'l variety $\mathcal{P}_{2,4,4} = \mathcal{L}_{2,4,4} = \mathcal{U}_{2,4}$ has degree 12 in \mathbb{P}^{15} . Have two parametrizations from the \mathbb{P}^7 of 2×4 matrices. The map from quartic paths is 48-to-1. From four-segment paths it is 4-to-1.

Consider the four-segment path in \mathbb{R}^2 given by

$$X = \begin{bmatrix} 29 & 15 & 13 & 2 \\ 23 & 26 & 6 & 27 \end{bmatrix}$$

Three other paths have the same $2 \times 2 \times 2 \times 2$ signature tensor:

36.74838	-17.80169	37.75532	2.29799
27.39596	-9.82926	40.23084	24.20246],
[102.16286	$-131.13298 \\ -136.84738$	85.92484	2.04528
104.55786		86.56467	27.72484],
38.53237	38.8057 –	-79.20533	60.86735
28.69523	82.7734 –	-147.7839	118.3152

Rational Identifiability

We believe that low-complexity paths can be recovered from their signature tensors whenever this is permitted by the dimensions.

Conjecture

Let $k \geq 3$ and take m strictly less than the threshold M at which the universal variety is expected to be filled. Then both of the signature varieties $\mathcal{P}_{d,k,m}$ and $\mathcal{L}_{d,k,m}$ are rationally identifiable.

Current best results:

Theorem

- Rational identifiability holds for $m \leq 7$
- Algebraic identifiability holds for $m \leq 30$.
- Identifiability holds for $\mathcal{L}_{d,k,m}$ provided $m \leq d$.

This relies on reduction to 3-way tensors.

Reductions

Proposition

Fix integers d, k, m that satisfy $d \ge m \ge 1$ and $k \ge 3$.

- (a) If $\mathcal{L}_{m,3,m}$ is rationally (resp. algebraically) identifiable then $\mathcal{L}_{d,k,m}$ is as well.
- (b) If $\mathcal{P}_{m,3,m}$ is rationally (resp. algebraically) identifiable then $\mathcal{P}_{d,k,m}$ is as well.

Proof.

For the reduction from k to 3 we note that $\sigma^{(k)}(X)$ determines $\sigma^{(3)}(X)$ up to a multiplicative constant, by using shuffle relations.

The reduction from (d, m) to (m, m) is based on tensor methods. It relies on a variant of the Tucker decomposition (Kruskal's Theorem). The core tensors are $\sigma^k(C_{\text{mono}})$ and $\sigma^k(C_{\text{axis}})$.

Invitation to read...

Learning Paths from Signature Tensors

<u>Abstract</u>: Matrix congruence extends naturally to the setting of tensors. We apply methods from tensor decomposition, algebraic geometry and numerical optimization to this group action. Given a tensor in the orbit of another tensor, we compute a matrix which transforms one to the other. Our primary application is an inverse problem from stochastic analysis: the recovery of paths from their signature tensors of order three. We establish identifiability results and recovery algorithms for piecewise linear paths, polynomial paths, and generic dictionaries. A detailed analysis of the relevant condition numbers is presented. We also compute the shortest path with a given signature tensor.

Next summer in Bern

SIAM AG 19 Proposed Minisymposia

Algebraic methods in stochastic analysis

Organizers: Carlos Amendola and Anna Seigal

Signature tensors of paths

Organizers: Joscha Diehl and Francesco Galuppi

