Varieties of Signature Tensors Second Lecture

Bernd Sturmfels

MPI Leipzig, UC Berkeley and TU Berlin

Polynomial Signature Varieties

Consider paths $X:[0,1] \rightarrow \mathbb{R}^{d}$ whose coordinates are polynomials of degree $\leq m$. We identify paths with $d \times m$-matrices $X=\left(x_{i j}\right)$:

$$
X_{i}(t)=x_{i 1} t+x_{i 2} t^{2}+x_{i 3} t^{3}+\cdots+x_{i m} t^{m} .
$$

The k th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying our favorite $m \times m \times \cdots \times m$ tensor

$$
\sigma^{k}\left(C_{\text {mono }}\right)=\left[\frac{i_{1}}{i_{1}} \cdot \frac{i_{2}}{i_{1}+i_{2}} \cdot \frac{i_{3}}{i_{1}+i_{2}+i_{3}} \cdots \frac{i_{k}}{i_{1}+i_{2}+\cdots+i_{k}}\right]
$$

on all k sides with the $d \times m$ matrix X.

Polynomial Signature Varieties

Consider paths $X:[0,1] \rightarrow \mathbb{R}^{d}$ whose coordinates are polynomials of degree $\leq m$. We identify paths with $d \times m$-matrices $X=\left(x_{i j}\right)$:

$$
X_{i}(t)=x_{i 1} t+x_{i 2} t^{2}+x_{i 3} t^{3}+\cdots+x_{i m} t^{m} .
$$

The k th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying our favorite $m \times m \times \cdots \times m$ tensor

$$
\sigma^{k}\left(C_{\text {mono }}\right)=\left[\frac{i_{1}}{i_{1}} \cdot \frac{i_{2}}{i_{1}+i_{2}} \cdot \frac{i_{3}}{i_{1}+i_{2}+i_{3}} \cdots \frac{i_{k}}{i_{1}+i_{2}+\cdots+i_{k}}\right]
$$

on all k sides with the $d \times m$ matrix X.
The polynomial signature variety $\mathcal{P}_{d, k, m}$ is the Zariski closure of the image of the rational map

$$
\sigma^{(k)}: \mathbb{P}^{d m-1} \longrightarrow \mathbb{P}^{d^{k}-1}, X \mapsto \sigma^{(k)}(X) .
$$

Remark: If $m \leq d$ then this is the closure of a $\operatorname{GL}(d)$ orbit in $\left(\mathbb{C}^{d}\right)^{\otimes m}$.

Example: Quadratic Paths in 3-Space

The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^{3} lies in the universal variety $\mathcal{U}_{3,3}$ for $3 \times 3 \times 3$ tensors.

$\mathcal{P}_{3,3,2}$ has dimension 5 , degree 90 , and is cut out by 162 quadrics in \mathbb{P}^{25}. Recall that $\mathcal{U}_{3,3}$ has dimension 13 , degree 24 , and 81 quadrics.

Example: Quadratic Paths in 3-Space

The third signature variety $\mathcal{P}_{3,3,2}$ for quadratic paths in \mathbb{R}^{3} lies in the universal variety $\mathcal{U}_{3,3}$ for $3 \times 3 \times 3$ tensors.

$\mathcal{P}_{3,3,2}$ has dimension 5 , degree 90 , and is cut out by 162 quadrics in \mathbb{P}^{25}. Recall that $\mathcal{U}_{3,3}$ has dimension 13 , degree 24 , and 81 quadrics.

The linear span of $\mathcal{P}_{3,3,2}$ is the hyperplane \mathbb{P}^{25} defined by

$$
\sigma_{123}-\sigma_{132}-\sigma_{213}+\sigma_{231}+\sigma_{312}-\sigma_{321}=0
$$

This linear form is the signed volume of the convex hull of a path.

Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by $d \times m$ matrices X.
Their steps are the column vectors $X_{1}, \ldots, X_{m} \in \mathbb{R}^{d}$. The path is

$$
t \mapsto X_{1}+\cdots+X_{i-1}+(m t-i+1) \cdot X_{i} \quad \text { for } \quad \frac{i-1}{m} \leq t \leq \frac{i}{m}
$$

The k th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying the upper triangular $m \times m \times \cdots \times m$ tensor $\sigma^{k}\left(C_{\text {axis }}\right)$ on all k sides with the $d \times m$ matrix X.

Piecewise Linear Signature Varieties

Piecewise linear paths are also represented by $d \times m$ matrices X.
Their steps are the column vectors $X_{1}, \ldots, X_{m} \in \mathbb{R}^{d}$. The path is

$$
t \mapsto X_{1}+\cdots+X_{i-1}+(m t-i+1) \cdot X_{i} \quad \text { for } \quad \frac{i-1}{m} \leq t \leq \frac{i}{m}
$$

The k th signature $\sigma^{(k)}(X)$ is a $d \times d \times \cdots \times d$ tensor. It can be computed by multiplying the upper triangular $m \times m \times \cdots \times m$ tensor $\sigma^{k}\left(C_{\text {axis }}\right)$ on all k sides with the $d \times m$ matrix X.

The piecewise linear signature variety $\mathcal{L}_{d, k, m}$ is the Zariski closure of the image of the rational map

$$
\sigma^{(k)}: \mathbb{P}^{d m-1} \longrightarrow \mathbb{P}^{d^{k}-1}, X \mapsto \sigma^{(k)}(X)
$$

Remark: If $m \leq d$ then this is the closure of a $\mathrm{GL}(d)$ orbit in $\left(\mathbb{C}^{d}\right)^{\otimes m}$.

Few Steps in 3-Space

$$
\sigma^{(3)}(X)=\frac{1}{6}\left[\begin{array}{lll|rrr|rrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & -6 & -6 & 3 & 3 \\
0 & 6 & 0 & -6 & 3 & -3 & 0 & 0 & 1
\end{array}\right]
$$

Parametrizations

By Chen (1954), the n-step signature of a piecewise linear path X is given by the tensor product of tensor exponentials:

$$
\sigma^{\leq n}(X)=\exp \left(X_{1}\right) \otimes \exp \left(X_{2}\right) \otimes \cdots \otimes \exp \left(X_{m}\right) \in T^{n}\left(\mathbb{R}^{d}\right)
$$

Parametrizations

By Chen (1954), the n-step signature of a piecewise linear path X is given by the tensor product of tensor exponentials:

$$
\sigma^{\leq n}(X)=\exp \left(X_{1}\right) \otimes \exp \left(X_{2}\right) \otimes \cdots \otimes \exp \left(X_{m}\right) \in T^{n}\left(\mathbb{R}^{d}\right)
$$

Corollary
The kth signature tensor of X equals

$$
\sigma^{(k)}(X)=\sum_{\tau} \prod_{\ell=1}^{m} \frac{1}{\left|\tau^{-1}(\ell)\right|!} \cdot X_{\tau(1)} \otimes X_{\tau(2)} \otimes X_{\tau(3)} \otimes \cdots \otimes X_{\tau(k)}
$$

Sum is over weakly increasing functions $\tau:\{1, \ldots, k\} \rightarrow\{1, \ldots, m\}$.
Example $(k=3)$
The third signature is the $d \times d \times d$ tensor $\sigma^{(3)}(X)=$

$$
\frac{1}{6} \cdot \sum_{i=1}^{m} X_{i}^{\otimes 3}+\frac{1}{2} \cdot \sum_{1 \leq i<j \leq m}\left(X_{i}^{\otimes 2} \otimes X_{j}+X_{i} \otimes X_{j}^{\otimes 2}\right)+\sum_{1 \leq i<j<1 \leq m} X_{i} \otimes X_{j} \otimes X_{k}
$$

Inclusions

Theorem
For any d and any k, we have the following chains of inclusions between the kth Veronese variety and the kth universal variety:
$\nu_{k}\left(\mathbb{P}^{d-1}\right)=\mathcal{L}_{d, k, 1} \subset \mathcal{L}_{d, k, 2} \subset \cdots \subset \mathcal{L}_{d, k, M-1} \subset \mathcal{L}_{d, k, M}=\mathcal{U}_{d, k} \subset \mathbb{P}^{d^{k}-1}$
$\nu_{k}\left(\mathbb{P}^{d-1}\right)=\mathcal{P}_{d, k, 1} \subset \mathcal{P}_{d, k, 2} \subset \cdots \subset \mathcal{P}_{d, k, M^{\prime}-1} \subset \mathcal{P}_{d, k, M^{\prime}}=\mathcal{U}_{d, k} \subset \mathbb{P}^{d^{k}-1}$

Here M and M^{\prime} are constants that depend only on d and k.

Remark

- Dimension count yields conjectured values for M, M^{\prime}. More later.
- The number m is similar to tensor rank, where a chain of secant varieties eventually fills the ambient space.

Similarities and Differences

Polynomial and piecewise linear signature varieties agree for matrices:

$$
\mathcal{L}_{d, 2, m}=\mathcal{P}_{d, 2, m} .
$$

These are $d \times d$ matrices $P+Q$, where P is symmetric of rank ≤ 1, and Q is skew-symmetric, such that $\operatorname{rank}([P Q]) \leq m$.

Theorem

Two-segment paths and quadratic paths in \mathbb{R}^{2} have different signature varieties $\mathcal{L}_{2, k, 2} \neq \mathcal{P}_{2, k, 2}$ in $\mathbb{P}^{2^{k}-1}$ for $k \geq 3$.

Similarities and Differences

Polynomial and piecewise linear signature varieties agree for matrices:

$$
\mathcal{L}_{d, 2, m}=\mathcal{P}_{d, 2, m} .
$$

These are $d \times d$ matrices $P+Q$, where P is symmetric of rank ≤ 1, and Q is skew-symmetric, such that $\operatorname{rank}([P Q]) \leq m$.

Theorem

Two-segment paths and quadratic paths in \mathbb{R}^{2} have different signature varieties $\mathcal{L}_{2, k, 2} \neq \mathcal{P}_{2, k, 2}$ in $\mathbb{P}^{2^{k}-1}$ for $k \geq 3$.
Example $(k=4)$
The threefolds $\mathcal{P}_{2,4,2}$ and $\mathcal{L}_{2,4,2}$ are orbit closures of GL(2) in \mathbb{P}^{15}.
We use invariant theory to distinguish these orbits.
The space of $\mathrm{SL}(2)$-invariant linear forms on $\left(\mathbb{R}^{2}\right)^{\otimes 4}$ is spanned by

$$
\begin{aligned}
& \ell_{1} \\
\text { and } & \ell_{2}
\end{aligned}=\sigma_{1212}-\sigma_{1221}-\sigma_{2112}+\sigma_{2121}-\sigma_{1221}-\sigma_{2112}+\sigma_{2211} .
$$

Their ratio ℓ_{1} / ℓ_{2} is a rational function on \mathbb{P}^{15} that is constant on orbits. It takes value 0 on $C_{\text {axis }}$ and value $1 / 5$ on $C_{\text {mono }}$.

Data

We computed the polynomial and piecewise linear signature varieties for many tensor formats:

d	k	m	amb	dim	deg	gens
2	3	2	7	3	6	9
2	3	≥ 3	7	4	4	6
2	4	2	14	3	24	55
2	4	3	15	5	$192^{\mathcal{P}}, 64^{\mathcal{L}}$	$\left(33^{\mathcal{P}}, 34^{\mathcal{L}}\right),\left(0^{\mathcal{P}}, 3^{\mathcal{L}}\right), ?$
2	4	≥ 4	15	7	12	33
2	5	2	25	3	60	220
2	5	3	31	5	$1266^{\mathcal{P}}, 492^{\mathcal{L}}$	$\left(160^{\mathcal{P}}, 185^{\mathcal{L}}\right), ?$
2	6	2	41	3	120	670
2	6	3	62	5	$4352^{\mathcal{P}}, 1920^{\mathcal{L}}$	$\left(945^{\mathcal{P}}, 1056^{\mathcal{L}}\right), ?$
3	3	2	25	5	90	162
3	3	3	26	8	$756^{\mathcal{P}}, 396^{\mathcal{L}}$	$\left(83^{\mathcal{P}}, 91^{\mathcal{L}}\right), ?$
3	4	2	65	5	600	1536
3	4	3	80	8	$?$	$\left(1242^{\mathcal{P}}, 1374^{\mathcal{L}}\right), ?$

Table: Invariants of the varieties $\mathcal{P}_{d, k, m}$ and $\mathcal{L}_{d, k, m}$

A Question of Lyons and Xu

Proposition

There is an axis path with $m=8$ steps in alternating axis directions in the plane \mathbb{R}^{2} and length $I=14<16=2^{k+1}$ whose first $k=3$ signature tensors are all zero.

Answer to Question 2.5 in [T. Lyons and W. Xu: Hyperbolic development and inversion of signature, J. Funct. Anal. 272 (2017) 2933-2955]

Axis Paths

For axis paths, each step X_{i} is a multiple $a_{i} \cdot e_{\nu_{i}}$ of a basis vector. Record the step sequence $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right) \in\{1,2, \ldots, d\}^{m}$.

The k th signature tensors of such axis paths form a subvariety $\mathcal{A}_{\nu, k}$ of $\mathcal{L}_{d, k, m}$. It is parametrized by the lengths $a_{1}, a_{2}, \ldots, a_{m}$.

A current project by Laura Colmenajero and Mateusz Michalek studies the signature varieties $\mathcal{A}_{\nu, k}$. Stay tuned for their results.

Axis Paths

For axis paths, each step X_{i} is a multiple $a_{i} \cdot e_{\nu_{i}}$ of a basis vector. Record the step sequence $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{m}\right) \in\{1,2, \ldots, d\}^{m}$.

The k th signature tensors of such axis paths form a subvariety $\mathcal{A}_{\nu, k}$ of $\mathcal{L}_{d, k, m}$. It is parametrized by the lengths $a_{1}, a_{2}, \ldots, a_{m}$.

A current project by Laura Colmenajero and Mateusz Michalek studies the signature varieties $\mathcal{A}_{\nu, k}$. Stay tuned for their results.

Example: For $d=3$ and $\nu=(1,2,3)$ we get signature matrices

$$
\sigma^{(2)}(X)=\frac{1}{2}\left(\begin{array}{ccc}
a_{1}^{2} & 2 a_{1} a_{2} & 2 a_{1} a_{3} \\
0 & a_{2}^{2} & 2 a_{2} a_{3} \\
0 & 0 & a_{3}^{2}
\end{array}\right)
$$

Thus the signature variety $\mathcal{A}_{\nu, 2}$ is a Veronese surface in $\mathbb{P}^{5} \subset \mathbb{P}^{8}$.
Exercise: Compute $\mathcal{A}_{\nu, 4} \subset \mathbb{P}^{15}$ for $d=2, m \leq 7$, and $\nu=(1,2,1,2, \ldots)$.

Identifiability

Counting parameters gives an upper bound on the dimension of our signature varieties:
$\lambda_{d, k}=\#$ Lyndon words

$$
\text { and } \quad \begin{aligned}
\operatorname{dim}\left(\mathcal{L}_{d, k, m}\right) & \leq \min \left\{\lambda_{d, k}-1, d m-1\right\}, \\
\operatorname{dim}\left(\mathcal{P}_{d, k, m}\right) & \leq \min \left\{\lambda_{d, k}-1, d m-1\right\}
\end{aligned}
$$

If the dimension equals $d m-1$ then the variety is algebraically identifiable. This means that, for some $r \in \mathbb{N}$, the map from $d \times m$ matrices X to signature tensors $\sigma^{(k)}(X)$ is r-to- 1 . If $r=1$ then the map is birational, and the variety is rationally identifiable.

Conjecture

- Both inequalities are equalities provided $d, m \geq 2$ and $k \geq 3$.
- Stabilization constants for filling the universal variety are

$$
M=M^{\prime}=\left\lceil\frac{\lambda_{d, k}}{d}\right\rceil
$$

Filling the Universal Variety

$d \backslash k$	3	4	5	6	7	8	9
2	3	4	7	12	21	36	64
3	5	11	27	66	170	440	1168
4	8	23	74	241	826	2866	10146
5	11	41	166	682	2914	12664	56064
6	16	68	327	1616	8281	43246	229866

Table: The value $M=M^{\prime}$ at which the signature varieties stabilize.

Example $(d=3, k=4, M=11)$
Consider $3 \times 3 \times 3 \times 3$ signature tensors for paths in \mathbb{R}^{3}. The universal variety $\mathcal{U}_{3,4}$ has dimension 31 and degree 672 in \mathbb{P}^{80}.

The signature varieties $\mathcal{P}_{3,4,10}$ and $\mathcal{L}_{3,4,10}$ have dimension 30 . They are divisors in

$$
\mathcal{P}_{3,4,11}=\mathcal{L}_{3,4,11}=\mathcal{U}_{3,4}
$$

At the Borderline

Identifiability is delicate for $\lambda_{d, k}=m d$, when the signature variety exactly fills the universal variety. We expect algebraic identifiability.

Example ($d=2, k=4, M=4$)
The 7-dim'I variety $\mathcal{P}_{2,4,4}=\mathcal{L}_{2,4,4}=\mathcal{U}_{2,4}$ has degree 12 in \mathbb{P}^{15}. Have two parametrizations from the \mathbb{P}^{7} of 2×4 matrices. The map from quartic paths is 48 -to- 1 . From four-segment paths it is 4 -to- 1 .
Consider the four-segment path in \mathbb{R}^{2} given by

$$
X=\left[\begin{array}{cccc}
29 & 15 & 13 & 2 \\
23 & 26 & 6 & 27
\end{array}\right]
$$

Three other paths have the same $2 \times 2 \times 2 \times 2$ signature tensor:

$$
\begin{gathered}
{\left[\begin{array}{lllc}
36.74838 & -17.80169 & 37.75532 & 2.29799 \\
27.39596 & -9.82926 & 40.23084 & 24.20246
\end{array}\right],} \\
{\left[\begin{array}{lllc}
102.16286 & -131.13298 & 85.92484 & 2.04528 \\
104.55786 & -136.84738 & 86.56467 & 27.72484
\end{array}\right],} \\
{\left[\begin{array}{lllc}
38.53237 & 38.8057 & -79.20533 & 60.86735 \\
28.69523 & 82.7734 & -147.7839 & 118.3152
\end{array}\right]}
\end{gathered}
$$

Rational Identifiability

We believe that low-complexity paths can be recovered from their signature tensors whenever this is permitted by the dimensions.

Conjecture

Let $k \geq 3$ and take m strictly less than the threshold M at which the universal variety is expected to be filled. Then both of the signature varieties $\mathcal{P}_{d, k, m}$ and $\mathcal{L}_{d, k, m}$ are rationally identifiable.

Current best results:
Theorem

- Rational identifiability holds for $m \leq 7$
- Algebraic identifiability holds for $m \leq 30$.
- Identifiability holds for $\mathcal{L}_{d, k, m}$ provided $m \leq d$.

This relies on reduction to 3-way tensors.

Reductions

Proposition

Fix integers d, k, m that satisfy $d \geq m \geq 1$ and $k \geq 3$.
(a) If $\mathcal{L}_{m, 3, m}$ is rationally (resp. algebraically) identifiable then $\mathcal{L}_{d, k, m}$ is as well.
(b) If $\mathcal{P}_{m, 3, m}$ is rationally (resp. algebraically) identifiable then $\mathcal{P}_{d, k, m}$ is as well.

Proof.

For the reduction from k to 3 we note that $\sigma^{(k)}(X)$ determines $\sigma^{(3)}(X)$ up to a multiplicative constant, by using shuffle relations.

The reduction from (d, m) to (m, m) is based on tensor methods. It relies on a variant of the Tucker decomposition (Kruskal's Theorem). The core tensors are $\sigma^{k}\left(C_{\text {mono }}\right)$ and $\sigma^{k}\left(C_{\text {axis }}\right)$.

Invitation to read...

Learning Paths from Signature Tensors

Abstract: Matrix congruence extends naturally to the setting of tensors. We apply methods from tensor decomposition, algebraic geometry and numerical optimization to this group action. Given a tensor in the orbit of another tensor, we compute a matrix which transforms one to the other. Our primary application is an inverse problem from stochastic analysis: the recovery of paths from their signature tensors of order three. We establish identifiability results and recovery algorithms for piecewise linear paths, polynomial paths, and generic dictionaries. A detailed analysis of the relevant condition numbers is presented. We also compute the shortest path with a given signature tensor.

Next summer in Bern

SIAM AG 19 Proposed Minisymposia
Algebraic methods in stochastic analysis
Organizers: Carlos Amendola and Anna Seigal
Signature tensors of paths
Organizers: Joscha Diehl and Francesco Galuppi

