Varieties of Signature Tensors

Bernd Sturmfels
MPI Leipzig, UC Berkeley and TU Berlin

Work with Carlos Améndola and Peter Friz and related articles

Paths

A path is a piecewise differentiable map $X:[0,1] \rightarrow \mathbb{R}^{d}$.
Coordinate functions: $X_{1}, X_{2}, \ldots, X_{d}: \mathbb{R} \rightarrow \mathbb{R}$
Their differentials

$$
\mathrm{d} X_{i}(t)=X_{i}^{\prime}(t) \mathrm{d} t
$$

are the coordinates of the vector

$$
\mathrm{d} X=\left(\mathrm{d} X_{1}, \mathrm{~d} X_{2}, \ldots, \mathrm{~d} X_{d}\right)
$$

Fundamental Theorem of Calculus:

$$
\int_{0}^{1} \mathrm{~d} X_{i}(t)=X_{i}(1)-X_{i}(0)
$$

The first signature of the path X is

$$
\sigma^{(1)}(X)=\int_{0}^{1} \mathrm{~d} X(t)=X(1)-X(0) \in \mathbb{R}^{d}
$$

Signature Matrices

Fix a path $X:[0,1] \rightarrow \mathbb{R}^{d}$ with $X(0)=0$.
Its second signature $S=\sigma^{(2)}(X)$ is the $d \times d$ matrix with entries

$$
\sigma_{i j}=\int_{0}^{1} \int_{0}^{t} \mathrm{~d} X_{i}(s) \mathrm{d} X_{j}(t)
$$

By the Fundamental Theorem of Calculus,

$$
\sigma_{i j}=\int_{0}^{1} X_{i}(t) X_{j}^{\prime}(t) \mathrm{d} t
$$

The symmetric matrix $S+S^{\top}$ has rank one. Its entries are

$$
\sigma_{i j}+\sigma_{j i}=X_{i}(1) \cdot X_{j}(1)
$$

In matrix notation,

$$
S+S^{T}=X(1)^{T} X(1)
$$

The skew-symmetric matrix $S-S^{T}$ measures deviation from linearity:

$$
\sigma_{i j}-\sigma_{j i}=\int_{0}^{1}\left(X_{i}(t) X_{j}^{\prime}(t)-X_{j}(t) X_{i}^{\prime}(t)\right) \mathrm{d} t
$$

Lévy Area

The entry $\sigma_{i j}-\sigma_{j i}$ of the skew-symmetric matrix $S-S^{T}$ is the area below the line minus the area above the line:

Figure 5: Example of signed Lévy area of a curve. Areas above and under the chord connecting two endpoints are negative and positive respectively.

Signature Tensors

The k th signature of X is a tensor $\sigma^{(k)}(X)$ of order k and format $d \times d \times \cdots \times d$. Its d^{k} entries $\sigma_{i_{1} i_{2} \cdots i_{k}}$ are the iterated integrals

$$
\sigma_{i_{1} i_{2} \cdots i_{k}}=\int_{0}^{1} \int_{0}^{t_{k}} \cdots \int_{0}^{t_{3}} \int_{0}^{t_{2}} \mathrm{~d} X_{i_{1}}\left(t_{1}\right) \mathrm{d} X_{i_{2}}\left(t_{2}\right) \cdots \mathrm{d} X_{i_{k-1}}\left(t_{k-1}\right) \mathrm{d} X_{i_{k}}\left(t_{k}\right) .
$$

The tensor equals

$$
\sigma^{(k)}(X)=\int_{\Delta} \mathrm{d} X\left(t_{1}\right) \otimes \mathrm{d} X\left(t_{2}\right) \otimes \cdots \otimes \mathrm{d} X\left(t_{k}\right)
$$

where the integral is over the simplex

$$
\Delta=\left\{\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in \mathbb{R}^{k}: 0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{k} \leq 1\right\}
$$

We are interested in projective varieties in tensor space $\mathbb{P}^{d^{k}-1}$ that arise when X ranges over some nice families of paths.

Example: For linear paths X, we get the Veronese variety.

Planar Example

Consider quadratic paths in the plane \mathbb{R}^{2} :

$$
X(t)=\left(x_{11} t+x_{12} t^{2}, x_{21} t+x_{22} t^{2}\right)^{T}=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \cdot\binom{t}{t^{2}}
$$

The third signature $\sigma^{(3)}(X)$ is a $2 \times 2 \times 2$ tensor. Its entries are

$$
\begin{aligned}
& \sigma_{111}=\frac{1}{6}\left(x_{11}+x_{12}\right)^{3} \\
& \sigma_{112}=\frac{1}{6}\left(x_{11}+x_{12}\right)^{2}\left(x_{21}+x_{22}\right)+\frac{1}{60}\left(5 x_{11}+4 x_{12}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{121}=\frac{1}{6}\left(x_{11}+x_{12}\right)^{2}\left(x_{21}+x_{22}\right)+\frac{1}{60}\left(2 x_{12}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{211}=\frac{1}{6}\left(x_{11}+x_{12}\right)^{2}\left(x_{21}+x_{22}\right)-\frac{1}{60}\left(5 x_{11}+6 x_{12}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{122}=\frac{1}{6}\left(x_{11}+x_{12}\right)\left(x_{21}+x_{22}\right)^{2}+\frac{1}{60}\left(5 x_{21}+6 x_{22}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{212}=\frac{1}{6}\left(x_{11}+x_{12}\right)\left(x_{21}+x_{22}\right)^{2}-\quad \frac{1}{60}\left(2 x_{22}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{221}=\frac{1}{6}\left(x_{11}+x_{12}\right)\left(x_{21}+x_{22}\right)^{2}-\frac{1}{60}\left(5 x_{21}+4 x_{22}\right)\left(x_{11} x_{22}-x_{21} x_{12}\right) \\
& \sigma_{222}=\frac{1}{6}\left(x_{21}+x_{22}\right)^{3}
\end{aligned}
$$

This defines a threefold of degree 6 in \mathbb{P}^{7}, cut out by 9 quadrics.

Sources

K.-T. Chen: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Annals of Mathematics 65 (1957) 163-178.
K.-T. Chen: Integration of paths - a faithful representation of paths by noncommutative formal power series, Transactions Amer. Math. Soc. 89 (1958) 395-407.
I. Chevyrev and A. Kormilitzin: A primer on the signature method in machine learning, arXiv:1603.03788.
P. Friz and M. Hairer: A Course on Rough Paths. With an introduction to regularity structures, Universitext, Springer, Cham, 2014.
P. Friz and N. Victoir: Multidimensional Stochastic Processes as Rough Paths. Theory and Applications, Cambridge University Press, 2010.
B. Hambly and T. Lyons: Uniqueness for the signature of a path of bounded variation and the reduced path group, Annals of Mathematics 171 (2010) 109-177.
T. Lyons: Rough paths, signatures and the modelling of functions on streams, Proc. International Congress of Mathematicians 2014, Kyung Moon Publishers, Seoul, 163-184.

My Favorite Tensors

Example (The Canonical Axis Path)

Let $C_{\text {axis }}$ be the path from $(0,0, \ldots, 0)$ to $(1,1, \ldots, 1)$ given by d linear steps in unit directions $e_{1}, e_{2}, \ldots, e_{d}$. The entry $\sigma_{i_{1} i_{2} \cdots i_{k}}$ of the signature tensor $\sigma^{(k)}\left(C_{\text {axis }}\right)$ is zero unless $i_{1} \leq i_{2} \leq \cdots \leq i_{k}$.

In that case, it equals $1 / k$! times the number of distinct permutations of the string $i_{1} i_{2} \cdots i_{k}$. For example, if $k=4$ then $\sigma_{1111}=\frac{1}{24}, \sigma_{1112}=\frac{1}{6}, \sigma_{1122}=\frac{1}{4}, \sigma_{1123}=\frac{1}{2}, \sigma_{1234}=1$ and $\sigma_{1243}=0$.

My Favorite Tensors

Example (The Canonical Axis Path)

Let $C_{\text {axis }}$ be the path from $(0,0, \ldots, 0)$ to $(1,1, \ldots, 1)$ given by d linear steps in unit directions $e_{1}, e_{2}, \ldots, e_{d}$. The entry $\sigma_{i_{1} i_{2} \cdots i_{k}}$ of the signature tensor $\sigma^{(k)}\left(C_{\text {axis }}\right)$ is zero unless $i_{1} \leq i_{2} \leq \cdots \leq i_{k}$.

In that case, it equals $1 / k$! times the number of distinct permutations of the string $i_{1} i_{2} \cdots i_{k}$. For example, if $k=4$ then $\sigma_{1111}=\frac{1}{24}, \sigma_{1112}=\frac{1}{6}, \sigma_{1122}=\frac{1}{4}, \sigma_{1123}=\frac{1}{2}, \sigma_{1234}=1$ and $\sigma_{1243}=0$.

Example (The Canonical Monomial Path)

Let $C_{\text {mono }}$ be the monomial path $t \mapsto\left(t, t^{2}, t^{3}, \ldots, t^{d}\right)$. It travels from $(0,0, \ldots, 0)$ to $(1,1, \ldots, 1)$ along the rational normal curve. Entries of the signature tensor $\sigma^{(k)}\left(C_{\text {mono }}\right)$ are

$$
\sigma_{i_{1} i_{2} \cdots i_{k}}=\frac{i_{1}}{i_{1}} \cdot \frac{i_{2}}{i_{1}+i_{2}} \cdot \frac{i_{3}}{i_{1}+i_{2}+i_{3}} \cdots \frac{i_{k}}{i_{1}+i_{2}+\cdots+i_{k}} .
$$

My Favorite Matrices

The signature matrices of the two canonical paths are

$$
\sigma^{(2)}\left(C_{\text {axis }}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & 1 & 1 \\
0 & \frac{1}{2} & 1 \\
0 & 0 & \frac{1}{2}
\end{array}\right) \quad \text { and } \quad \sigma^{(2)}\left(C_{\text {mono }}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{2}{3} & \frac{3}{4} \\
\frac{1}{3} & \frac{2}{4} & \frac{3}{5} \\
\frac{1}{4} & \frac{2}{5} & \frac{3}{6}
\end{array}\right) .
$$

The symmetric part of each matrix is the same constant rank 1 matrix:

$$
\sigma^{(2)}\left(C_{\bullet}\right)+\sigma^{(2)}\left(C_{\bullet}\right)^{T}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

We encode cubic paths and three-segment paths by 3×3 matrices

$$
\mathbf{X}=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)
$$

The map $X \mapsto \sigma^{(2)}(X)$ from paths to signature matrices is given by the congruence action $\mathbf{X} \mapsto \mathbf{X} \cdot \sigma^{(2)}\left(C_{\mathbf{0}}\right) \cdot \mathbf{X}^{\boldsymbol{\top}}$.

The Skyline Path

is the following axis path with 13 steps in \mathbb{R}^{2} :

$$
X=\left[\begin{array}{rrrrrrrrrrrrr}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1 & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 & 0
\end{array}\right]
$$

Its $2 \times 2 \times 2$ signature tensor can be gotten from the core tensor $C_{\text {axis }}$ of size $13 \times 13 \times 13$ by multiplying with the 2×13 matrix X on all three sides:

$$
S_{\text {skyline }}=\llbracket C_{\text {axis }} ; X, X, X \rrbracket=\frac{1}{6}\left[\begin{array}{cc|cc}
343 & 0 & -84 & 18 \\
84 & 18 & -36 & 0
\end{array}\right] .
$$

Three-step path and cubic path with the same signature tensor:

Shortest Path

... for a given signature tensor

$$
\sigma^{(3)}(X)=\left[\begin{array}{cc|cc}
343 & 0 & -84 & 18 \\
84 & 18 & -36 & 0
\end{array}\right]
$$

[M. Pfeffer, A. Seigal, B.St: Learning Paths from Signature Tensors]

Klee-Minty Path

$$
X=\left[\begin{array}{rrrrrrr}
1 & 0 & -1 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right] .
$$

$$
\sigma^{(3)}(X)=\frac{1}{6}\left[\begin{array}{lll|rrr|rrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & -6 & -6 & 3 & 3 \\
0 & 6 & 0 & -6 & 3 & -3 & 0 & 0 & 1
\end{array}\right]
$$

Shortest Path

Pop Quiz

Fix $d=2$ and consider the parametrization of the unit circle

$$
X:[0,1] \rightarrow \mathbb{R}^{2}, t \mapsto(\sin (2 \pi t), \cos (2 \pi t))
$$

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!

Pop Quiz

Fix $d=2$ and consider the parametrization of the unit circle

$$
X:[0,1] \rightarrow \mathbb{R}^{2}, t \mapsto(\sin (2 \pi t), \cos (2 \pi t))
$$

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!
More seriously,

- Compute the signature tensor $\sigma^{(3)}(X)$.

Pop Quiz

Fix $d=2$ and consider the parametrization of the unit circle

$$
X:[0,1] \rightarrow \mathbb{R}^{2}, t \mapsto(\sin (2 \pi t), \cos (2 \pi t))
$$

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!
More seriously,

- Compute the signature tensor $\sigma^{(3)}(X)$.

Answer: $\sigma^{(3)}(X)=-\pi\left(e_{122}-2 e_{212}+e_{221}\right)$.

Inverse Problem:

To what extent is a path determined by its signature tensors?

Signature Matrices

Theorem
Let $k=2$ and $m \leq d$. Our two favorite $m \times m$ matrices $\sigma^{(2)}\left(C_{\text {axis }}\right)$ and $\sigma^{(2)}\left(C_{\text {mono }}\right)$ (padded by zeros) lie in the same orbit for the action of $\mathrm{GL}_{d}(\mathbb{R})$ by congruence on $d \times d$ matrices.

The orbit closure is the signature variety $\mathcal{M}_{d, m}$ in $\mathbb{P}^{d^{2}-1}$.

Signature Matrices

Theorem
Let $k=2$ and $m \leq d$. Our two favorite $m \times m$ matrices $\sigma^{(2)}\left(C_{\text {axis }}\right)$ and $\overline{\sigma^{(2)}}\left(C_{\text {mono }}\right)$ (padded by zeros) lie in the same orbit for the action of $\mathrm{GL}_{d}(\mathbb{R})$ by congruence on $d \times d$ matrices.

The orbit closure is the signature variety $\mathcal{M}_{d, m}$ in $\mathbb{P}^{d^{2}-1}$.

Any $d \times d$ matrix $S=\sigma^{(2)}(X)$ is uniquely the sum of a symmetric matrix and a skew-symmetric matrix:

$$
S=P+Q, \quad \text { where } \quad P=\frac{1}{2}\left(S+S^{T}\right) \quad \text { and } \quad Q=\frac{1}{2}\left(S-S^{T}\right)
$$

The $\binom{d+1}{2}$ entries $p_{i j}$ of P and $\binom{d}{2}$ entries $q_{i j}$ of Q serve as coordinates on the space $\mathbb{P}^{d^{2}-1}$ of matrices $S=\left(\sigma_{i j}\right)$.

Determinantal Varieties

Theorem
For each d and m, the following subvarieties of $\mathbb{P}^{d^{2}-1}$ coincide:

1. Signature matrices of piecewise linear paths with m segments.
2. Signature matrices of polynomial paths of degree m.
3. Matrices $P+Q$, with P symmetric, Q skew-symmetric, such that

$$
\operatorname{rank}(P) \leq 1 \quad \text { and } \quad \operatorname{rank}([P Q]) \leq m
$$

Determinantal Varieties

Theorem

For each d and m, the following subvarieties of $\mathbb{P}^{d^{2}-1}$ coincide:

1. Signature matrices of piecewise linear paths with m segments.
2. Signature matrices of polynomial paths of degree m.
3. Matrices $P+Q$, with P symmetric, Q skew-symmetric, such that

$$
\operatorname{rank}(P) \leq 1 \quad \text { and } \quad \operatorname{rank}([P Q]) \leq m
$$

For each fixed d, these varieties $\mathcal{M}_{d, m}$ form a nested family:

$$
\mathcal{M}_{d, 1} \subset \mathcal{M}_{d, 2} \subset \mathcal{M}_{d, 3} \subset \cdots \subset \mathcal{M}_{d, d}=\mathcal{M}_{d, d+1}=\cdots
$$

Fix $m \leq d$. Then $\mathcal{M}_{d, m}$ is irreducible of dimension $m d-\binom{m}{2}-1$ and has singular locus $\mathcal{M}_{d, m-1}$. For m odd, its ideal is generated by the 2-minors of P and $(m+1)$-pfaffians of Q. For m even, take the 2-minors of $P,(m+2)$-pfaffians of Q, and entries in $P \cdot C_{m}(Q)$ where $C_{m}(Q)$ is the circuit matrix formed by the m-pfaffians.

Example: Quadratic Paths in 3-Space

The variety $\mathcal{M}_{3,2}$ has dimension 4 and degree 6 in \mathbb{P}^{8}. It is the Zariski closure of the common GL(3)-orbit of the two matrices

$$
\sigma^{(2)}\left(C_{\text {axis }}\right)=\left[\begin{array}{ccc}
\frac{1}{2} & 1 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { or } \quad \sigma^{(2)}\left(C_{\text {mono }}\right)=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{2}{3} & 0 \\
\frac{1}{3} & \frac{2}{4} & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

It is cut out by the 2-minors of $P=\left(p_{i j}\right)$ and the 3 -minors of

$$
\left[\begin{array}{ll}
P & Q
\end{array}\right]=\left[\begin{array}{cccccc}
p_{11} & p_{12} & p_{13} & 0 & q_{12} & q_{13} \\
p_{12} & p_{22} & p_{23} & -q_{12} & 0 & q_{23} \\
p_{13} & p_{23} & p_{33} & -q_{13} & -q_{23} & 0
\end{array}\right] .
$$

These do not generate the prime ideal of $\mathcal{M}_{3,2}$.
We also need the entries of $P \cdot C_{2}(Q)$ where $C_{2}(Q)=\left[q_{23},-q_{13}, q_{12}\right]^{T}$.
The universal variety $\mathcal{U}_{3,2}=\mathcal{M}_{3,3} \subset \mathbb{P}^{8}$ is a cone over the Veronese surface $\mathbb{P}^{2} \hookrightarrow \mathbb{P}^{5}$.

Universal Varieties

The k th signature tensor of a path X in \mathbb{R}^{d} is a point $\sigma^{(k)}(X)$ in the tensor space $\left(\mathbb{R}^{d}\right)^{\otimes k}$, and hence in the projective space $\mathbb{P}^{d^{k}-1}$.
Consider the set of signature tensors $\sigma^{(k)}(X)$, as X ranges over all paths $[0,1] \rightarrow \mathbb{R}^{d}$. This is the universal variety $\mathcal{U}_{d, k} \subset \mathbb{P}^{d^{k}-1}$.

$d \backslash k$	2	3	4	5	6	7	8	9
2	2	4	7	13	22	40	70	126
3	5	13	31	79	195	507	1317	3501
4	9	29	89	293	963	3303	11463	40583
5	14	54	204	828	3408	14568	63318	280318

Table: The dimension of $\mathcal{U}_{d, k}$ is much smaller than $d^{k}-1$.

Universal Varieties

The k th signature tensor of a path X in \mathbb{R}^{d} is a point $\sigma^{(k)}(X)$ in the tensor space $\left(\mathbb{R}^{d}\right)^{\otimes k}$, and hence in the projective space $\mathbb{P}^{d^{k}-1}$.
Consider the set of signature tensors $\sigma^{(k)}(X)$, as X ranges over all paths $[0,1] \rightarrow \mathbb{R}^{d}$. This is the universal variety $\mathcal{U}_{d, k} \subset \mathbb{P}^{d^{k}-1}$.

$d \backslash k$	2	3	4	5	6	7	8	9
2	2	4	7	13	22	40	70	126
3	5	13	31	79	195	507	1317	3501
4	9	29	89	293	963	3303	11463	40583
5	14	54	204	828	3408	14568	63318	280318

Table: The dimension of $\mathcal{U}_{d, k}$ is much smaller than $d^{k}-1$.

Theorem

The dimension of the universal variety $\mathcal{U}_{d, k}$ is the number of Lyndon words of length $\leq k$ over the alphabet $\{1,2, \ldots, d\}$.

A word is a Lyndon word if it is strictly smaller in lexicographic order than all of its rotations.

Tensors

The truncated tensor algebra is a non-commutative algebra:

$$
T^{n}\left(\mathbb{R}^{d}\right)=\bigoplus_{k=0}^{n}\left(\mathbb{R}^{d}\right)^{\otimes k}
$$

Standard basis given by words of length $\leq n$ on $\{1,2, \ldots, d\}$:
$e_{i_{1} i_{2} \cdots i_{k}}:=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \quad$ for $1 \leq i_{1}, \ldots, i_{k} \leq d$ and $0 \leq k \leq n$.

Tensors

The truncated tensor algebra is a non-commutative algebra:

$$
T^{n}\left(\mathbb{R}^{d}\right)=\bigoplus_{k=0}^{n}\left(\mathbb{R}^{d}\right)^{\otimes k}
$$

Standard basis given by words of length $\leq n$ on $\{1,2, \ldots, d\}$:
$e_{i_{1} i_{2} \cdots i_{k}}:=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \quad$ for $1 \leq i_{1}, \ldots, i_{k} \leq d$ and $0 \leq k \leq n$.
The tensor algebra is also a Lie algebra via

$$
[P, Q]=P \otimes Q-Q \otimes P \quad \text { for } P, Q \in T^{n}\left(\mathbb{R}^{d}\right) .
$$

Tensors

The truncated tensor algebra is a non-commutative algebra:

$$
T^{n}\left(\mathbb{R}^{d}\right)=\bigoplus_{k=0}^{n}\left(\mathbb{R}^{d}\right)^{\otimes k}
$$

Standard basis given by words of length $\leq n$ on $\{1,2, \ldots, d\}$:
$e_{i_{1} i_{2} \cdots i_{k}}:=e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \quad$ for $1 \leq i_{1}, \ldots, i_{k} \leq d$ and $0 \leq k \leq n$.
The tensor algebra is also a Lie algebra via

$$
[P, Q]=P \otimes Q-Q \otimes P \quad \text { for } P, Q \in T^{n}\left(\mathbb{R}^{d}\right) .
$$

$T^{n}\left(\mathbb{R}^{d}\right)$ is a commutative algebra with respect to the shuffle product \amalg. The shuffle product of two words of lengths r and s is the sum over all $\binom{r+s}{s}$ ways of interleaving the two words:

$$
\begin{gathered}
e_{12} \amalg e_{34}=e_{12 \amalg 34}=e_{1234}+e_{1324}+e_{1342}+e_{3124}+e_{3142}+e_{3412} \\
e_{3 \amalg 134}=e_{3134}+2 e_{1334}+e_{1343} \quad e_{21 \amalg 21}=2 e_{2121}+4 e_{2211}
\end{gathered}
$$

Free Lie Algebra

Lie ${ }^{n}\left(\mathbb{R}^{d}\right)$ is the smallest Lie subalgebra of $T^{n}\left(\mathbb{R}^{d}\right)$ containing \mathbb{R}^{d}. This is a linear subspace of $T_{0}^{n}\left(\mathbb{R}^{d}\right)=\{0\} \oplus \mathbb{R}^{d} \oplus \cdots \oplus\left(\mathbb{R}^{d}\right)^{\otimes n}$. Lemma
This is characterized by the vanishing of all shuffle linear forms:

$$
\operatorname{Lie}^{n}\left(\mathbb{R}^{d}\right)=\left\{P \in T_{0}^{n}\left(\mathbb{R}^{d}\right): \sigma_{l} \sqcup J(P)=0 \text { for all words } I, J\right\}
$$

Free Lie Algebra

$\operatorname{Lie}^{n}\left(\mathbb{R}^{d}\right)$ is the smallest Lie subalgebra of $T^{n}\left(\mathbb{R}^{d}\right)$ containing \mathbb{R}^{d}. This is a linear subspace of $T_{0}^{n}\left(\mathbb{R}^{d}\right)=\{0\} \oplus \mathbb{R}^{d} \oplus \cdots \oplus\left(\mathbb{R}^{d}\right)^{\otimes n}$.

Lemma

This is characterized by the vanishing of all shuffle linear forms:

$$
\left.\operatorname{Lie}^{n}\left(\mathbb{R}^{d}\right)=\left\{P \in T_{0}^{n}\left(\mathbb{R}^{d}\right): \sigma_{\lrcorner}\right\lrcorner J(P)=0 \text { for all words } I, J\right\}
$$

Theorem

Basis for Lie ${ }^{n}\left(\mathbb{R}^{d}\right)$ is given by Lie bracketings of all Lyndon words.

[C. Reutenauer: Free Lie Algebras, Oxford University Press, 1993]

Example. $\operatorname{Lie}^{4}\left(\mathbb{R}^{2}\right)$ is 8 -dimensional in $T_{0}^{4}\left(\mathbb{R}^{2}\right) \simeq \mathbb{R}^{30}$. The eight Lyndon words $1,2,12,112,122,1112,1122,1222$ determine a basis:
$e_{1}, e_{2},\left[e_{1}, e_{2}\right]=e_{12}-e_{21}, \ldots,\left[\left[\left[e_{1}, e_{2}\right], e_{2}\right], e_{2}\right]=e_{1222}-3 e_{2122}+3 e_{2212}-e_{2221}$
The 22 -dim'l space of linear relations is spanned by shuffles

$$
\begin{gathered}
\sigma_{21 \amalg 21}=2 \sigma_{2121}+4 \sigma_{2211}, \quad \sigma_{1 \amalg 111}=4 \sigma_{1111} \\
\sigma_{12 \amalg 21}=2 \sigma_{1221}+\sigma_{1212}+\sigma_{2121}+2 \sigma_{2112}
\end{gathered}
$$

Free Lie Group

The following are polynomial maps on $T_{0}^{n}\left(\mathbb{R}^{d}\right)$:

$$
\exp (P)=\sum_{r \geq 0} \frac{1}{r!} P^{\otimes r} \quad \text { and } \quad \log (1+P)=\sum_{r \geq 1} \frac{(-1)^{r-1}}{r} P^{\otimes r}
$$

The logarithm inverts the exponential function:

$$
\log (\exp (P))=P \quad \text { for all } P \in T_{0}^{n}\left(\mathbb{R}^{d}\right)
$$

The step-n free Lie group is the image of the free Lie algebra:

$$
\mathcal{G}^{n}\left(\mathbb{R}^{d}\right):=\exp \left(\operatorname{Lie}^{n}\left(\mathbb{R}^{d}\right)\right)
$$

Theorem
This Lie group is an algebraic variety in $T_{1}^{n}\left(\mathbb{R}^{d}\right)$. Its is defined by

$$
\sigma_{I \sqcup J}(P)=\sigma_{l}(P) \sigma_{J}(P) \quad \text { for all words } I, J \text { with }|I|+|J| \leq n .
$$

Our contribution: This is the prime ideal. We have a nice Gröbner basis.

Example

The Lie algebra $\operatorname{Lie}^{3}\left(\mathbb{R}^{2}\right)$ has dimension 5 :
$\sigma=r e_{1}+s e_{2}+t\left[e_{1}, e_{2}\right]+u\left[e_{1},\left[e_{1}, e_{2}\right]\right]+v\left[\left[e_{1}, e_{2}\right], e_{2}\right], \quad r, s, t, v, u \in \mathbb{R}$.
The exponential map from $\operatorname{Lie}^{3}\left(\mathbb{R}^{2}\right)$ into $T_{1}^{3}\left(\mathbb{R}^{2}\right) \simeq \mathbb{R}^{14}$ is

$$
\begin{aligned}
\exp (\sigma)= & 1+r e_{1}+s e_{2}+\frac{r^{2}}{2} e_{11}+\left(\frac{r s}{2}+t\right) e_{12}+\left(\frac{r s}{2}-t\right) e_{21}+\cdots \\
& \cdots+\left(\frac{r s^{2}}{6}-2 v\right) e_{212}+\left(\frac{r s^{2}}{6}-\frac{s t}{2}+v\right) e_{221}+\frac{s^{3}}{6} e_{222}
\end{aligned}
$$

Its image is the 5 -dimensional Lie group $\mathcal{G}_{2,3}$, defined by

$$
\begin{gathered}
\left\langle\sigma_{1}^{2}-2 \sigma_{11}, \sigma_{1} \sigma_{2}-\sigma_{12}-\sigma_{21}, \sigma_{1} \sigma_{2}-\sigma_{12}-\sigma_{21}, \sigma_{2}^{2}-2 \sigma_{22}\right. \\
\sigma_{1} \sigma_{11}-3 \sigma_{111}, \sigma_{1} \sigma_{12}-2 \sigma_{112}-\sigma_{121}, \sigma_{1} \sigma_{21}-\sigma_{121}-2 \sigma_{211} \\
\sigma_{1} \sigma_{22}-\sigma_{122}-\sigma_{212}-\sigma_{221}, \sigma_{2} \sigma_{11}-\sigma_{121}-\sigma_{211}-\sigma_{112} \\
\left.\sigma_{2} \sigma_{12}-2 \sigma_{122}-\sigma_{212}, \sigma_{2} \sigma_{21}-2 \sigma_{221}-\sigma_{212}, \sigma_{2} \sigma_{22}-3 \sigma_{222}\right\rangle
\end{gathered}
$$

Back to Paths

The connection to paths comes from the following key result. This is attributed to Chow (1940) and Chen (1957).

Theorem (Chen-Chow)

The step-n free nilpotent Lie group $\mathcal{G}^{n}\left(\mathbb{R}^{d}\right)$ is precisely the image of the step n signature map applied to all paths in \mathbb{R}^{d} :

$$
\mathcal{G}^{n}\left(\mathbb{R}^{d}\right)=\left\{\sigma^{\leq n}(X): X:[0,1] \rightarrow \mathbb{R}^{d} \text { any smooth path }\right\}
$$

Let X be the piecewise linear path with steps $X_{1}, X_{2}, \ldots, X_{m}$ in \mathbb{R}^{d}. Chen (1954) showed that the n-step signature of the path X is given by the tensor product of tensor exponentials:

$$
\sigma^{\leq n}(X)=\exp \left(X_{1}\right) \otimes \exp \left(X_{2}\right) \otimes \cdots \otimes \exp \left(X_{m}\right) \in T^{n}\left(\mathbb{R}^{d}\right)
$$

The Universal Variety

We focus on signature tensors $\sigma^{(k)}(X)$ of a fixed order k.
Consider the projection of the free Lie group $\mathcal{G}_{d, k}$ into $\left(\mathbb{R}^{d}\right)^{\otimes k}$.
The image is an affine cone. The corresponding projective variety in $\mathbb{P}^{d^{k}-1}$ is denoted $\mathcal{U}_{d, k}$ and is called the universal variety.

Corollary

The universal variety $\mathcal{U}_{d, k}$ is the projective variety given by the kth signature tensors $\sigma^{(k)}(X)$ of all paths X in \mathbb{R}^{d}.

Example $(k=2)$

The universal variety $\mathcal{U}_{d, 2}$ of signature matrices consists of all $d \times d$ matrices whose symmetric part has rank 1 .

Example $(d=2, k=3)$
The universal variety $\mathcal{U}_{2,3}$ for $2 \times 2 \times 2$ tensors has dimension 4 and degree 4 in \mathbb{P}^{7}. Its singular locus is a line. Equations? Geometry?

Census

With Améndola and Friz, we conjectured that the prime ideal of the universal variety $\mathcal{U}_{d, k}$ is always generated by quadrics:

d	k	amb	dim	deg	gens
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	3	26	13	24	81
3	4	80	31	672	954
4	3	63	29	200	486

Table: The prime ideals of the universal varieties $\mathcal{U}_{d, k}$

Census

With Améndola and Friz, we conjectured that the prime ideal of the universal variety $\mathcal{U}_{d, k}$ is always generated by quadrics:

d	k	amb	dim	deg	gens
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	3	26	13	24	81
3	4	80	31	672	954
4	3	63	29	200	486

Table: The prime ideals of the universal varieties $\mathcal{U}_{d, k}$

Francesco Galuppi found a change of coordinates for $k \leq 3$ which turns $\mathcal{U}_{d, k}$ into a projective toric variety. Using these coordinates, he was able to disprove our conjecture.

Exercises

- Start with the ideal of the Lie group $\mathcal{G}_{2,3}$:

$$
\begin{gathered}
\left\langle\sigma_{1}^{2}-2 \sigma_{11}, \sigma_{1} \sigma_{2}-\sigma_{12}-\sigma_{21}, \sigma_{1} \sigma_{2}-\sigma_{12}-\sigma_{21}, \sigma_{2}^{2}-2 \sigma_{22}\right. \\
\sigma_{1} \sigma_{11}-3 \sigma_{111}, \sigma_{1} \sigma_{12}-2 \sigma_{112}-\sigma_{121}, \sigma_{1} \sigma_{21}-\sigma_{121}-2 \sigma_{211} \\
\sigma_{1} \sigma_{22}-\sigma_{122}-\sigma_{212}-\sigma_{221}, \sigma_{2} \sigma_{11}-\sigma_{121}-\sigma_{211}-\sigma_{112} \\
\left.\sigma_{2} \sigma_{12}-2 \sigma_{122}-\sigma_{212}, \sigma_{2} \sigma_{21}-2 \sigma_{221}-\sigma_{212}, \sigma_{2} \sigma_{22}-3 \sigma_{222}\right\rangle
\end{gathered}
$$

Eliminate the six unknowns $\sigma_{1}, \sigma_{2}, \sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}$ to get the ideal of the universal variety $\mathcal{U}_{2,3} \subset \mathbb{P}^{7}$. What is this variety?

- The Lie group $\mathcal{G}_{3,3}$ is an affine variety in $T_{1}^{3}\left(\mathbb{R}^{3}\right) \simeq \mathbb{R}^{39}$. Find a Gröbner basis for its ideal. What is the dimension of $\mathcal{G}_{3,3}$?
- Compute the ideal of the universal variety $\mathcal{U}_{3,3}$ in \mathbb{P}^{26}. What is its dimension, degree, singularities, Hilbert polynomial,?
- List explicit tensors in $\mathcal{U}_{3,3}$. Find corresponding paths in \mathbb{R}^{3}.

