Varieties of Signature Tensors

Bernd Sturmfels MPI Leipzig, UC Berkeley and TU Berlin

Work with Carlos Améndola and Peter Friz and related articles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Paths

A *path* is a piecewise differentiable map $X : [0,1] \to \mathbb{R}^d$. Coordinate functions: $X_1, X_2, \dots, X_d : \mathbb{R} \to \mathbb{R}$

Their differentials

$$\mathrm{d}X_i(t) = X_i'(t)\mathrm{d}t$$

are the coordinates of the vector

$$\mathrm{d}X = (\mathrm{d}X_1, \mathrm{d}X_2, \ldots, \mathrm{d}X_d).$$

Fundamental Theorem of Calculus:

$$\int_0^1 \mathrm{d} X_i(t) = X_i(1) - X_i(0)$$

The *first signature* of the path X is

$$\sigma^{(1)}(X) = \int_0^1 \mathrm{d}X(t) = X(1) - X(0) \in \mathbb{R}^d.$$

Signature Matrices

Fix a path $X : [0,1] \rightarrow \mathbb{R}^d$ with X(0) = 0.

Its second signature $S = \sigma^{(2)}(X)$ is the $d \times d$ matrix with entries

$$\sigma_{ij} = \int_0^1 \int_0^t \mathrm{d}X_i(s) \,\mathrm{d}X_j(t).$$

By the Fundamental Theorem of Calculus,

$$\sigma_{ij} = \int_0^1 X_i(t) X_j'(t) \mathrm{d}t.$$

The symmetric matrix $S + S^T$ has rank one. Its entries are

$$\sigma_{ij}+\sigma_{ji} = X_i(1)\cdot X_j(1).$$

In matrix notation,

$$S+S^{T} = X(1)^{T}X(1).$$

The skew-symmetric matrix $S - S^T$ measures deviation from linearity:

$$\sigma_{ij} - \sigma_{ji} = \int_0^1 (X_i(t)X_j'(t) - X_j(t)X_i'(t)) dt$$

Lévy Area

The entry $\sigma_{ij} - \sigma_{ji}$ of the skew-symmetric matrix $S - S^T$ is the area below the line minus the area above the line:

Figure 5: Example of signed Lévy area of a curve. Areas above and under the chord connecting two endpoints are negative and positive respectively.

Signature Tensors

The *kth signature* of X is a tensor $\sigma^{(k)}(X)$ of order k and format $d \times d \times \cdots \times d$. Its d^k entries $\sigma_{i_1 i_2 \cdots i_k}$ are the *iterated integrals*

$$\sigma_{i_1i_2\cdots i_k} = \int_0^1 \int_0^{t_k} \cdots \int_0^{t_3} \int_0^{t_2} dX_{i_1}(t_1) dX_{i_2}(t_2) \cdots dX_{i_{k-1}}(t_{k-1}) dX_{i_k}(t_k).$$

The tensor equals

$$\sigma^{(k)}(X) = \int_{\Delta} \mathrm{d}X(t_1) \otimes \mathrm{d}X(t_2) \otimes \cdots \otimes \mathrm{d}X(t_k),$$

where the integral is over the simplex

$$\Delta = \{(t_1, t_2, \ldots, t_k) \in \mathbb{R}^k : 0 \le t_1 \le t_2 \le \cdots \le t_k \le 1\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We are interested in projective varieties in tensor space \mathbb{P}^{d^k-1} that arise when X ranges over some nice families of paths.

Example: For linear paths *X*, we get the Veronese variety.

Planar Example

Consider quadratic paths in the plane \mathbb{R}^2 :

$$X(t) = (x_{11}t + x_{12}t^2, x_{21}t + x_{22}t^2)^T = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \cdot \begin{pmatrix} t \\ t^2 \end{pmatrix}.$$

The third signature $\sigma^{(3)}(X)$ is a 2×2×2 tensor. Its entries are

$$\begin{split} \sigma_{111} &= \frac{1}{6}(x_{11} + x_{12})^3 \\ \sigma_{112} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(5x_{11} + 4x_{12})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{121} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) + \frac{1}{60}(2x_{12})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{211} &= \frac{1}{6}(x_{11} + x_{12})^2(x_{21} + x_{22}) - \frac{1}{60}(5x_{11} + 6x_{12})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{122} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 + \frac{1}{60}(5x_{21} + 6x_{22})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{212} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(2x_{22})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{221} &= \frac{1}{6}(x_{11} + x_{12})(x_{21} + x_{22})^2 - \frac{1}{60}(5x_{21} + 4x_{22})(x_{11}x_{22} - x_{21}x_{12}) \\ \sigma_{222} &= \frac{1}{6}(x_{21} + x_{22})^3 \end{split}$$

This defines a threefold of degree 6 in \mathbb{P}^7 , cut out by 9 quadrics.

・ロト・日本・モート モー うへぐ

Sources

K.-T. Chen: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Annals of Mathematics **65** (1957) 163–178.

K.-T. Chen: Integration of paths – a faithful representation of paths by noncommutative formal power series, Transactions Amer. Math. Soc. **89** (1958) 395–407.

I. Chevyrev and A. Kormilitzin: A primer on the signature method in machine learning, arXiv:1603.03788.

P. Friz and M. Hairer: A Course on Rough Paths. With an introduction to regularity structures, Universitext, Springer, Cham, 2014.

P. Friz and N. Victoir: *Multidimensional Stochastic Processes as Rough Paths. Theory and Applications*, Cambridge University Press, 2010.

B. Hambly and T. Lyons: Uniqueness for the signature of a path of bounded variation and the reduced path group, Annals of Mathematics **171** (2010) 109–177.

T. Lyons: *Rough paths, signatures and the modelling of functions on streams*, Proc. International Congress of Mathematicians 2014, Kyung Moon Publishers, Seoul, 163–184.

My Favorite Tensors

Example (The Canonical Axis Path)

Let C_{axis} be the path from (0, 0, ..., 0) to (1, 1, ..., 1) given by d linear steps in unit directions $e_1, e_2, ..., e_d$. The entry $\sigma_{i_1 i_2 \cdots i_k}$ of the signature tensor $\sigma^{(k)}(C_{\text{axis}})$ is zero unless $i_1 \leq i_2 \leq \cdots \leq i_k$.

In that case, it equals 1/k! times the number of distinct permutations of the string $i_1i_2\cdots i_k$. For example, if k = 4 then $\sigma_{1111} = \frac{1}{24}$, $\sigma_{1112} = \frac{1}{6}$, $\sigma_{1122} = \frac{1}{4}$, $\sigma_{1123} = \frac{1}{2}$, $\sigma_{1234} = 1$ and $\sigma_{1243} = 0$.

My Favorite Tensors

Example (The Canonical Axis Path)

Let C_{axis} be the path from (0, 0, ..., 0) to (1, 1, ..., 1) given by d linear steps in unit directions $e_1, e_2, ..., e_d$. The entry $\sigma_{i_1 i_2 \cdots i_k}$ of the signature tensor $\sigma^{(k)}(C_{\text{axis}})$ is zero unless $i_1 \leq i_2 \leq \cdots \leq i_k$.

In that case, it equals 1/k! times the number of distinct permutations of the string $i_1i_2\cdots i_k$. For example, if k = 4 then $\sigma_{1111} = \frac{1}{24}$, $\sigma_{1112} = \frac{1}{6}$, $\sigma_{1122} = \frac{1}{4}$, $\sigma_{1123} = \frac{1}{2}$, $\sigma_{1234} = 1$ and $\sigma_{1243} = 0$.

Example (The Canonical Monomial Path)

Let C_{mono} be the monomial path $t \mapsto (t, t^2, t^3, \ldots, t^d)$. It travels from $(0, 0, \ldots, 0)$ to $(1, 1, \ldots, 1)$ along the rational normal curve. Entries of the signature tensor $\sigma^{(k)}(C_{\text{mono}})$ are

$$\sigma_{i_1 i_2 \cdots i_k} = \frac{i_1}{i_1} \cdot \frac{i_2}{i_1 + i_2} \cdot \frac{i_3}{i_1 + i_2 + i_3} \cdots \frac{i_k}{i_1 + i_2 + \cdots + i_k}.$$

My Favorite Matrices

The signature matrices of the two canonical paths are

$$\sigma^{(2)}(C_{\mathrm{axis}}) = \begin{pmatrix} \frac{1}{2} & 1 & 1\\ 0 & \frac{1}{2} & 1\\ 0 & 0 & \frac{1}{2} \end{pmatrix} \text{ and } \sigma^{(2)}(C_{\mathrm{mono}}) = \begin{pmatrix} \frac{1}{2} & \frac{2}{3} & \frac{3}{4}\\ \frac{1}{3} & \frac{2}{4} & \frac{3}{5}\\ \frac{1}{4} & \frac{2}{5} & \frac{3}{6} \end{pmatrix}$$

The symmetric part of each matrix is the same constant rank 1 matrix:

$$\sigma^{(2)}(C_{\bullet}) + \sigma^{(2)}(C_{\bullet})^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

We encode cubic paths and three-segment paths by 3×3 matrices

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}.$$

The map $X \mapsto \sigma^{(2)}(X)$ from paths to signature matrices is given by the congruence action $\mathbf{X} \mapsto \mathbf{X} \cdot \sigma^{(2)}(C_{\bullet}) \cdot \mathbf{X}^{\mathsf{T}}$.

The Skyline Path

is the following axis path with 13 steps in \mathbb{R}^2 :

$$X = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 2 & 0 & -2 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Its $2 \times 2 \times 2$ signature tensor can be gotten from the core tensor C_{axis} of size $13 \times 13 \times 13$ by multiplying with the 2×13 matrix X on all three sides:

$$S_{\text{skyline}} = \llbracket C_{\text{axis}}; X, X, X \rrbracket = rac{1}{6} \begin{bmatrix} 343 & 0 \\ 84 & 18 \\ -36 & 0 \end{bmatrix}$$

Three-step path and cubic path with the same signature tensor:

Shortest Path

... for a given signature tensor

$$\sigma^{(3)}(X) = \begin{bmatrix} 343 & 0 & | & -84 & 18 \\ 84 & 18 & | & -36 & 0 \end{bmatrix}.$$

[M. Pfeffer, A. Seigal, B.St: Learning Paths from Signature Tensors]

$$X = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

$$\sigma^{(3)}(X) = \frac{1}{6} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 & 0 & -6 & -6 & 3 & 3 \\ 0 & 6 & 0 & -6 & 3 & -3 & 0 & 0 & 1 \end{bmatrix}$$

Shortest Path

Pop Quiz

Fix d = 2 and consider the parametrization of the unit circle

$$X: [0,1] \rightarrow \mathbb{R}^2, t \mapsto (\sin(2\pi t), \cos(2\pi t)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!

Pop Quiz

Fix d = 2 and consider the parametrization of the unit circle

$$X: [0,1] \rightarrow \mathbb{R}^2, t \mapsto (\sin(2\pi t), \cos(2\pi t)).$$

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!

More seriously,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Compute the signature tensor $\sigma^{(3)}(X)$.

Pop Quiz

Fix d = 2 and consider the parametrization of the unit circle

$$X: [0,1] \rightarrow \mathbb{R}^2, t \mapsto (\sin(2\pi t), \cos(2\pi t)).$$

- Compute the signature vector $\sigma^{(1)}(X)$.
- Compute the signature matrix $\sigma^{(2)}(X)$.

Yes, you can do this !!!

More seriously,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Compute the signature tensor $\sigma^{(3)}(X)$.

Answer:
$$\sigma^{(3)}(X) = -\pi(e_{122} - 2e_{212} + e_{221}).$$

Inverse Problem:

To what extent is a path determined by its signature tensors?

Signature Matrices

Theorem

Let k = 2 and $m \le d$. Our two favorite $m \times m$ matrices $\sigma^{(2)}(C_{axis})$ and $\sigma^{(2)}(C_{mono})$ (padded by zeros) lie in the same orbit for the action of $\operatorname{GL}_d(\mathbb{R})$ by congruence on $d \times d$ matrices.

The orbit closure is the signature variety $\mathcal{M}_{d,m}$ in \mathbb{P}^{d^2-1} .

Signature Matrices

Theorem

Let k = 2 and $m \leq d$. Our two favorite $m \times m$ matrices $\sigma^{(2)}(C_{axis})$ and $\sigma^{(2)}(C_{mono})$ (padded by zeros) lie in the same orbit for the action of $\operatorname{GL}_d(\mathbb{R})$ by congruence on $d \times d$ matrices.

The orbit closure is the signature variety $\mathcal{M}_{d,m}$ in \mathbb{P}^{d^2-1} .

Any $d \times d$ matrix $S = \sigma^{(2)}(X)$ is uniquely the sum of a symmetric matrix and a skew-symmetric matrix:

$$S = P + Q$$
, where $P = \frac{1}{2}(S + S^T)$ and $Q = \frac{1}{2}(S - S^T)$.

The $\binom{d+1}{2}$ entries p_{ij} of P and $\binom{d}{2}$ entries q_{ij} of Q serve as coordinates on the space \mathbb{P}^{d^2-1} of matrices $S = (\sigma_{ij})$.

Determinantal Varieties

Theorem

For each d and m, the following subvarieties of \mathbb{P}^{d^2-1} coincide:

- 1. Signature matrices of piecewise linear paths with m segments.
- 2. Signature matrices of polynomial paths of degree m.
- 3. Matrices P+Q, with P symmetric, Q skew-symmetric, such that

 $\operatorname{rank}(P) \leq 1$ and $\operatorname{rank}([PQ]) \leq m$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Determinantal Varieties

Theorem

For each d and m, the following subvarieties of \mathbb{P}^{d^2-1} coincide:

- 1. Signature matrices of piecewise linear paths with m segments.
- 2. Signature matrices of polynomial paths of degree m.
- 3. Matrices P+Q, with P symmetric, Q skew-symmetric, such that

 $\operatorname{rank}(P) \leq 1$ and $\operatorname{rank}([PQ]) \leq m$.

For each fixed d, these varieties $\mathcal{M}_{d,m}$ form a nested family:

$$\mathcal{M}_{d,1} \subset \mathcal{M}_{d,2} \subset \mathcal{M}_{d,3} \subset \cdots \subset \mathcal{M}_{d,d} = \mathcal{M}_{d,d+1} = \cdots$$

Fix $m \leq d$. Then $\mathcal{M}_{d,m}$ is irreducible of dimension $md - \binom{m}{2} - 1$ and has singular locus $\mathcal{M}_{d,m-1}$. For m odd, its ideal is generated by the 2-minors of P and (m+1)-pfaffians of Q. For m even, take the 2-minors of P, (m+2)-pfaffians of Q, and entries in $P \cdot C_m(Q)$ where $C_m(Q)$ is the circuit matrix formed by the m-pfaffians.

Example: Quadratic Paths in 3-Space

The variety $\mathcal{M}_{3,2}$ has dimension 4 and degree 6 in \mathbb{P}^8 . It is the Zariski closure of the common $\mathrm{GL}(3)$ -orbit of the two matrices

$$\sigma^{(2)}(C_{\text{axis}}) = \begin{bmatrix} \frac{1}{2} & 1 & 0\\ 0 & \frac{1}{2} & 0\\ 0 & 0 & 0 \end{bmatrix} \quad \text{or} \quad \sigma^{(2)}(C_{\text{mono}}) = \begin{bmatrix} \frac{1}{2} & \frac{2}{3} & 0\\ \frac{1}{3} & \frac{2}{4} & 0\\ 0 & 0 & 0 \end{bmatrix}$$

It is cut out by the 2-minors of $P = (p_{ij})$ and the 3-minors of

$$\begin{bmatrix} P & Q \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & 0 & q_{12} & q_{13} \\ p_{12} & p_{22} & p_{23} & -q_{12} & 0 & q_{23} \\ p_{13} & p_{23} & p_{33} & -q_{13} & -q_{23} & 0 \end{bmatrix}$$

These do not generate the prime ideal of $\mathcal{M}_{3,2}$. We also need the entries of $P \cdot C_2(Q)$ where $C_2(Q) = [q_{23}, -q_{13}, q_{12}]^T$.

The universal variety $\mathcal{U}_{3,2} = \mathcal{M}_{3,3} \subset \mathbb{P}^8$ is a cone over the Veronese surface $\mathbb{P}^2 \hookrightarrow \mathbb{P}^5$.

Universal Varieties

The *k*th signature tensor of a path X in \mathbb{R}^d is a point $\sigma^{(k)}(X)$ in the tensor space $(\mathbb{R}^d)^{\otimes k}$, and hence in the projective space $\mathbb{P}^{d^{k}-1}$. Consider the set of signature tensors $\sigma^{(k)}(X)$, as X ranges over all paths $[0,1] \to \mathbb{R}^d$. This is the universal variety $\mathcal{U}_{d,k} \subset \mathbb{P}^{d^k-1}$.

$d \setminus k$	2	3	4	5	6	7	8	9
2	2	4	7	13	22	40	70	126
3	5	13	31	79	195	507	1317	3501
4	9	29	89	293	963	3303	11463	40583
5	14	54	204	828	3408	14568	63318	280318

Table: The dimension of $\mathcal{U}_{d,k}$ is much smaller than $d^k - 1$.

Universal Varieties

The *k*th signature tensor of a path X in \mathbb{R}^d is a point $\sigma^{(k)}(X)$ in the tensor space $(\mathbb{R}^d)^{\otimes k}$, and hence in the projective space $\mathbb{P}^{d^{k}-1}$. Consider the set of signature tensors $\sigma^{(k)}(X)$, as X ranges over all paths $[0,1] \to \mathbb{R}^d$. This is the universal variety $\mathcal{U}_{d,k} \subset \mathbb{P}^{d^k-1}$.

$d \setminus k$	2	3	4	5	6	7	8	9
2	2	4	7	13	22	40	70	126
3	5	13	31	79	195	507	1317	3501
4	9	29	89	293	963	3303	11463	40583
5	14	54	204	828	3408	14568	63318	280318

Table: The dimension of $\mathcal{U}_{d,k}$ is much smaller than $d^k - 1$.

Theorem

The dimension of the universal variety $U_{d,k}$ is the number of Lyndon words of length $\leq k$ over the alphabet $\{1, 2, ..., d\}$.

A word is a *Lyndon word* if it is strictly smaller in lexicographic order than all of its rotations.

Tensors

The *truncated tensor algebra* is a non-commutative algebra:

$$\mathcal{T}^n(\mathbb{R}^d) = \bigoplus_{k=0}^n (\mathbb{R}^d)^{\otimes k}$$

Standard basis given by words of length $\leq n$ on $\{1, 2, \dots, d\}$:

 $e_{i_1i_2\cdots i_k} \ := \ e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k} \quad \text{for } 1 \leq i_1, \ldots, i_k \leq d \text{ and } 0 \leq k \leq n.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tensors

The *truncated tensor algebra* is a non-commutative algebra:

$$T^n(\mathbb{R}^d) = \bigoplus_{k=0}^n (\mathbb{R}^d)^{\otimes k}$$

Standard basis given by words of length $\leq n$ on $\{1, 2, \dots, d\}$:

 $e_{i_1i_2\cdots i_k} \ := \ e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k} \quad \text{for } 1 \leq i_1, \ldots, i_k \leq d \text{ and } 0 \leq k \leq n.$

The tensor algebra is also a Lie algebra via

 $[P,Q] = P \otimes Q - Q \otimes P$ for $P,Q \in T^n(\mathbb{R}^d)$.

Tensors

The *truncated tensor algebra* is a non-commutative algebra:

$$\mathcal{T}^n(\mathbb{R}^d) \;=\; \bigoplus_{k=0}^n \, (\mathbb{R}^d)^{\otimes k}$$

Standard basis given by words of length $\leq n$ on $\{1, 2, \dots, d\}$:

 $e_{i_1i_2\cdots i_k} \ := \ e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k} \quad \text{for } 1 \leq i_1, \ldots, i_k \leq d \text{ and } 0 \leq k \leq n.$

The tensor algebra is also a Lie algebra via

$$[P,Q] = P \otimes Q - Q \otimes P$$
 for $P,Q \in T^n(\mathbb{R}^d)$.

 $T^{n}(\mathbb{R}^{d})$ is a commutative algebra with respect to the *shuffle* product $\sqcup \sqcup$. The shuffle product of two words of lengths *r* and *s* is the sum over all $\binom{r+s}{s}$ ways of interleaving the two words:

 $e_{12} \sqcup le_{34} = e_{12 \sqcup l} = e_{1234} + e_{1324} + e_{1342} + e_{3124} + e_{3142} + e_{3412}$

 $e_{3 \sqcup 134} = e_{3134} + 2e_{1334} + e_{1343}$ $e_{21 \sqcup 121} = 2e_{2121} + 4e_{2211}$

Free Lie Algebra

Lie^{*n*}(\mathbb{R}^d) is the smallest Lie subalgebra of $\mathcal{T}^n(\mathbb{R}^d)$ containing \mathbb{R}^d . This is a linear subspace of $\mathcal{T}^n_0(\mathbb{R}^d) = \{0\} \oplus \mathbb{R}^d \oplus \cdots \oplus (\mathbb{R}^d)^{\otimes n}$.

Lemma

This is characterized by the vanishing of all shuffle linear forms:

 $\operatorname{Lie}^{n}(\mathbb{R}^{d}) = \left\{ P \in T_{0}^{n}(\mathbb{R}^{d}) : \sigma_{I \sqcup \sqcup J}(P) = 0 \text{ for all words } I, J \right\}.$

Free Lie Algebra

Lie^{*n*}(\mathbb{R}^d) is the smallest Lie subalgebra of $T^n(\mathbb{R}^d)$ containing \mathbb{R}^d . This is a linear subspace of $T_0^n(\mathbb{R}^d) = \{0\} \oplus \mathbb{R}^d \oplus \cdots \oplus (\mathbb{R}^d)^{\otimes n}$.

Lemma

This is characterized by the vanishing of all shuffle linear forms:

 $\operatorname{Lie}^{n}(\mathbb{R}^{d}) = \left\{ P \in T_{0}^{n}(\mathbb{R}^{d}) : \sigma_{I \sqcup \sqcup J}(P) = 0 \text{ for all words } I, J \right\}.$

Theorem

Basis for $\operatorname{Lie}^{n}(\mathbb{R}^{d})$ is given by Lie bracketings of all Lyndon words.

[C. Reutenauer: Free Lie Algebras, Oxford University Press, 1993]

Example. Lie⁴(\mathbb{R}^2) is 8-dimensional in $T_0^4(\mathbb{R}^2) \simeq \mathbb{R}^{30}$. The eight Lyndon words 1, 2, 12, 112, 122, 1112, 1122, 1222 determine a basis: $e_1, e_2, [e_1, e_2] = e_{12} - e_{21}, \ldots, [[[e_1, e_2], e_2], e_2] = e_{1222} - 3e_{2122} + 3e_{2212} - e_{2221}$ The 22-dim'l space of linear relations is spanned by shuffles

$$\begin{aligned} \sigma_{21 \sqcup 121} &= 2\sigma_{2121} + 4\sigma_{2211} , \ \sigma_{1 \sqcup 111} &= 4\sigma_{1111} , \\ \sigma_{12 \sqcup 121} &= 2\sigma_{1221} + \sigma_{1212} + \sigma_{2121} + 2\sigma_{2112} . \end{aligned}$$

Free Lie Group

The following are polynomial maps on $T_0^n(\mathbb{R}^d)$:

$$\exp(P) = \sum_{r\geq 0} rac{1}{r!} P^{\otimes r} \quad ext{and} \quad \log(1+P) = \sum_{r\geq 1} rac{(-1)^{r-1}}{r} P^{\otimes r}.$$

The logarithm inverts the exponential function:

$$\log(\exp(P)) = P$$
 for all $P \in T_0^n(\mathbb{R}^d)$.

The step-n free Lie group is the image of the free Lie algebra:

$$\mathcal{G}^n(\mathbb{R}^d) := \exp(\operatorname{Lie}^n(\mathbb{R}^d)).$$

Theorem

This Lie group is an algebraic variety in $T_1^n(\mathbb{R}^d)$. Its is defined by

 $\sigma_{I \sqcup J}(P) = \sigma_{I}(P)\sigma_{J}(P)$ for all words I, J with $|I| + |J| \le n$.

Our contribution: This is the prime ideal. We have a nice Gröbner basis.

Example

The Lie algebra $\operatorname{Lie}^{3}(\mathbb{R}^{2})$ has dimension 5:

 $\sigma = re_1 + se_2 + t[e_1, e_2] + u[e_1, [e_1, e_2]] + v[[e_1, e_2], e_2], \quad r, s, t, v, u \in \mathbb{R}.$

The exponential map from $\operatorname{Lie}^3(\mathbb{R}^2)$ into $\mathcal{T}^3_1(\mathbb{R}^2)\simeq\mathbb{R}^{14}$ is

$$\exp(\sigma) = 1 + re_1 + se_2 + \frac{r^2}{2}e_{11} + (\frac{rs}{2} + t)e_{12} + (\frac{rs}{2} - t)e_{21} + \cdots$$
$$\cdots + (\frac{rs^2}{6} - 2v)e_{212} + (\frac{rs^2}{6} - \frac{st}{2} + v)e_{221} + \frac{s^3}{6}e_{222}.$$

Its image is the 5-dimensional Lie group $\mathcal{G}_{2,3}$, defined by

$$\begin{array}{l} \left\langle \sigma_{1}^{2}-2\sigma_{11}\,,\,\sigma_{1}\sigma_{2}-\sigma_{12}-\sigma_{21}\,,\,\sigma_{1}\sigma_{2}-\sigma_{12}-\sigma_{21}\,,\,\sigma_{2}^{2}-2\sigma_{22},\\ \sigma_{1}\sigma_{11}-3\sigma_{111},\,\sigma_{1}\sigma_{12}-2\sigma_{112}-\sigma_{121}\,,\,\sigma_{1}\sigma_{21}-\sigma_{121}-2\sigma_{211},\\ \sigma_{1}\sigma_{22}-\sigma_{122}-\sigma_{212}-\sigma_{221}\,,\,\sigma_{2}\sigma_{11}-\sigma_{121}-\sigma_{211}-\sigma_{112},\\ \sigma_{2}\sigma_{12}-2\sigma_{122}-\sigma_{212}\,,\,\sigma_{2}\sigma_{21}-2\sigma_{222}-\sigma_{212}\,,\,\sigma_{2}\sigma_{22}-3\sigma_{222} \right\rangle \end{array}$$

What does this have to do with paths?

What if we eliminate σ_i and σ_{ij} ?

Back to Paths

The connection to paths comes from the following key result. This is attributed to Chow (1940) and Chen (1957).

Theorem (Chen-Chow)

The step-n free nilpotent Lie group $\mathcal{G}^n(\mathbb{R}^d)$ is precisely the image of the step n signature map applied to all paths in \mathbb{R}^d :

$$\mathcal{G}^n(\mathbb{R}^d) \;=\; \left\{\, \sigma^{\leq n}(X) \;:\; X: [0,1] o \mathbb{R}^d ext{ any smooth path} \,
ight\}$$

Let X be the piecewise linear path with steps X_1, X_2, \ldots, X_m in \mathbb{R}^d . Chen (1954) showed that the *n*-step signature of the path X is given by the tensor product of tensor exponentials:

$$\sigma^{\leq n}(X) = \exp(X_1) \otimes \exp(X_2) \otimes \cdots \otimes \exp(X_m) \in T^n(\mathbb{R}^d).$$

The Universal Variety

We focus on signature tensors $\sigma^{(k)}(X)$ of a fixed order k. Consider the projection of the free Lie group $\mathcal{G}_{d,k}$ into $(\mathbb{R}^d)^{\otimes k}$. The image is an affine cone. The corresponding projective variety in $\mathbb{P}^{d^{k}-1}$ is denoted $\mathcal{U}_{d,k}$ and is called the *universal variety*.

Corollary

The universal variety $\mathcal{U}_{d,k}$ is the projective variety given by the kth signature tensors $\sigma^{(k)}(X)$ of all paths X in \mathbb{R}^d .

Example (k = 2)

The universal variety $U_{d,2}$ of signature matrices consists of all $d \times d$ matrices whose symmetric part has rank 1.

Example (d = 2, k = 3)

The universal variety $U_{2,3}$ for $2 \times 2 \times 2$ tensors has dimension 4 and degree 4 in \mathbb{P}^7 . Its singular locus is a line. Equations? Geometry?

Census

With Améndola and Friz, we conjectured that the prime ideal of the universal variety $U_{d,k}$ is always generated by quadrics:

d	k	amb	dim	deg	gens
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	3	26	13	24	81
3	4	80	31	672	954
4	3	63	29	200	486

Table: The prime ideals of the universal varieties $\mathcal{U}_{d,k}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Census

With Améndola and Friz, we conjectured that the prime ideal of the universal variety $U_{d,k}$ is always generated by quadrics:

d	k	amb	dim	deg	gens
2	3	7	4	4	6
2	4	15	7	12	33
2	5	31	13	40	150
3	3	26	13	24	81
3	4	80	31	672	954
4	3	63	29	200	486

Table: The prime ideals of the universal varieties $\mathcal{U}_{d,k}$

Francesco Galuppi found a change of coordinates for $k \leq 3$ which turns $U_{d,k}$ into a projective toric variety. Using these coordinates, he was able to disprove our conjecture.

Exercises

► Start with the ideal of the Lie group *G*_{2,3}:

$$\begin{array}{l} \left\langle \sigma_{1}^{2}-2\sigma_{11}\,,\,\sigma_{1}\sigma_{2}-\sigma_{12}-\sigma_{21}\,,\,\sigma_{1}\sigma_{2}-\sigma_{12}-\sigma_{21}\,,\,\sigma_{2}^{2}-2\sigma_{22},\\ \sigma_{1}\sigma_{11}-3\sigma_{111},\,\sigma_{1}\sigma_{12}-2\sigma_{112}-\sigma_{121}\,,\,\sigma_{1}\sigma_{21}-\sigma_{121}-2\sigma_{211},\\ \sigma_{1}\sigma_{22}-\sigma_{122}-\sigma_{212}-\sigma_{221}\,,\,\sigma_{2}\sigma_{11}-\sigma_{121}-\sigma_{211}-\sigma_{112}\,,\\ \sigma_{2}\sigma_{12}-2\sigma_{122}-\sigma_{212}\,,\,\sigma_{2}\sigma_{21}-2\sigma_{221}-\sigma_{212}\,,\,\sigma_{2}\sigma_{22}-3\sigma_{222}\right\rangle \end{array}$$

Eliminate the six unknowns $\sigma_1, \sigma_2, \sigma_{11}, \sigma_{12}, \sigma_{21}, \sigma_{22}$ to get the ideal of the universal variety $\mathcal{U}_{2,3} \subset \mathbb{P}^7$. What is this variety?

- ► The Lie group G_{3,3} is an affine variety in T³₁(ℝ³) ≃ ℝ³⁹. Find a Gröbner basis for its ideal. What is the dimension of G_{3,3}?
- ► Compute the ideal of the universal variety U_{3,3} in P²⁶. What is its dimension, degree, singularities, Hilbert polynomial,?
- List explicit tensors in $\mathcal{U}_{3,3}$. Find corresponding paths in \mathbb{R}^3 .