From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint

> Bernard Mourrain Inria Méditerranée, Sophia Antipolis Bernard.Mourrain@inria.fr

> > Part II

Decomposition algorithms

2 Low rank classification

3 The variety of missing moments

Univariate series:

Kronecker (1881)

The Hankel operator

$$\begin{array}{rcl} H_{\sigma}:\mathbb{C}^{\mathbb{N},finite} & \to & \mathbb{C}^{\mathbb{N}} \\ (p_m) & \mapsto & (\sum_m \sigma_{m+n} p_m)_{n\in\mathbb{N}} \end{array}$$

is of finite rank r iff $\exists \omega_1, \ldots, \omega_{r'} \in \mathbb{C}[y]$ and $\xi_1, \ldots, \xi_{r'} \in \mathbb{C}$ distincts s.t.

$$\sigma(y) = \sum_{n \in \mathbb{N}} \sigma_n \frac{y^n}{n!} = \sum_{i=1}^{r'} \omega_i(y) \mathbf{e}_{\xi_i}(y)$$

with $\sum_{i=1}^{r'} (\deg(\omega_i) + 1) = r$.

Decomposition algorithms

Multivariate series:

Theorem (Generalized Kronecker Theorem)

For $\sigma = (\sigma_1, \ldots, \sigma_m) \in (R^*)^m$, the Hankel operator

$$\begin{array}{rcl} H_{\sigma}: R & \rightarrow & (R^*)^m \\ p & \mapsto & (p \star \sigma_1, \dots, p \star \sigma_m) \end{array}$$

is of rank r iff

$$\sigma_j = \sum_{i=1}^{r'} \omega_{j,i}(\mathbf{y}) \, \mathfrak{e}_{\xi_i}(\mathbf{y}) \in \mathcal{P}ol\mathcal{E}$$
xp, $j = 1, \dots, m$

with
$$r = \sum_{i=1}^{r'} \mu(\omega_{1,i}, \dots, \omega_{m,i})$$
. In this case, we have
 $\mathcal{V}_{\mathbb{C}}(I_{\sigma}) = \{\xi_1, \dots, \xi_{r'}\}.$
 $I_{\sigma} = Q_1 \cap \dots \cap Q_{r'}$ with $Q_i^{\perp} = \langle \langle \omega_{1,i}, \dots, \omega_{m,i} \rangle \rangle \mathfrak{e}_{\xi_i}(\mathbf{y}).$

If m = 1, \mathcal{A}_{σ} is Gorenstein ($\mathcal{A}_{\sigma}^* = \mathcal{A}_{\sigma} \star \sigma$ is a free \mathcal{A}_{σ} -module of rank 1) and $(a, b) \mapsto \langle \sigma | ab \rangle$ is non-degenerate in \mathcal{A}_{σ} .

B. Mourrain

The decomposition from the algebraic structure

Decomposition problem

Given a (truncated) sequence of moments σ_{α} , $\alpha \in A$, find $\xi_i = (\xi_{i,1}, \xi_{i,1}, \dots, \xi_{i,n}) \in \overline{\mathbb{K}}^n$ disctint, $\omega_i \in \overline{\mathbb{K}}$. s.t. $\sigma = \sum_i \omega_i \mathfrak{e}_{\xi_i}$

Hankel operator: For $\sigma \in R^*$,

$$egin{array}{rcl} H_{\sigma}: R &
ightarrow & R^{*} \ & p & \mapsto & p \star \sigma \end{array}$$

Quotient algebra: $A_{\sigma} = R/I_{\sigma}$ where $I_{\sigma} = \ker H_{\sigma}$.

$$0 \to I_{\sigma} \to \mathbb{K}[\mathbf{x}] \quad \stackrel{H_{\sigma}}{\longrightarrow} \quad \mathcal{A}_{\sigma}^* \to 0$$
$$p \quad \mapsto \quad p \star \sigma$$

Isomorphism between \mathcal{A}_{σ} and $\mathcal{A}_{\sigma}^* = l_{\sigma}^{\perp}$. (\mathcal{A}_{σ} Gorenstein, i.e. $\exists \tau = \sigma \in \mathcal{A}_{\sigma}^*$ s.t. $\mathcal{A}_{\sigma}^* = \mathcal{A}_{\sigma} \star \tau$ is a free \mathcal{A}_{σ} -module). Find the points ξ_i as the roots of l_{σ} and the weights ω_i from the idempotents of \mathcal{A}_{σ} .

B. Mourrain

The structure of \mathcal{A}_{σ}

For $\sigma = \sum_{i=1}^{r} \omega_i \mathfrak{e}_{\xi_i}$, with $\omega_i \in \mathbb{C} \setminus \{0\}$ and $\xi_i \in \mathbb{C}^n$ distinct.

▶ rank $H_{\sigma} = \mathbf{r}$ and the multiplicity of the points ξ_1, \ldots, ξ_r in $\mathcal{V}(I_{\sigma})$ is 1.

For B, B' be of size r, $H_{\sigma}^{B',B}$ invertible iff B and B' are bases of $\mathcal{A}_{\sigma} = \mathbb{K}[\mathbf{x}]/I_{\sigma}$.

▶ The matrix M_i of multiplication by x_i in the basis B of A_σ is such that

$$\mathbf{H}_{\sigma}^{\mathbf{B}',\mathbf{x_iB}} = \mathbf{H}_{\mathbf{x_i}\star\sigma}^{\mathbf{B}',\mathbf{B}} = \mathbf{H}_{\sigma}^{\mathbf{B}',\mathbf{B}} \mathbf{M_i}$$

► The common **eigenvectors** of M_i are (up to a scalar) the Lagrange **interpolation polynomials** \mathbf{u}_{ξ_i} at the points ξ_i , i = 1, ..., r.

$$\mathbf{u}_{\xi_{i}}(\xi_{j}) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases} \quad \mathbf{u}_{\xi_{i}}^{2} \equiv \mathbf{u}_{\xi_{i}}, \ \sum_{i=1}^{r} \mathbf{u}_{\xi_{i}} \equiv 1. \end{cases}$$

The common **eigenvectors** of M_i^t are (up to a scalar) the vectors $[B(\xi_i)]$, i = 1, ..., r.

I

Decomposition algorithm

Input: The first coefficients $(\sigma_{\alpha})_{\alpha \in A}$ of the series

$$\sigma = \sum_{\alpha \in \mathbb{N}^n} \sigma_\alpha \frac{\mathbf{y}^\alpha}{\alpha !} = \sum_{i=1}^r \omega_i \mathfrak{e}_{\xi_i}(\mathbf{y})$$

- ① Compute bases $B, B' \subset \langle \mathbf{x}^A \rangle$ s.t. that $H^{B',B}$ invertible and $|B| = |B'| = r = \dim \mathcal{A}_{\sigma}$;
- 2 Deduce the tables of multiplications $M_i := (H_{\sigma}^{B',B})^{-1} H_{\sigma}^{B',x_iB}$
- 3 Compute the eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ of $\sum_i l_i M_i$ for a generic $\mathbf{l} = l_1 x_1 + \cdots + l_n x_n$;
- Deduce the points ξ_i = (ξ_{i,1},...,ξ_{i,n}) s.t. M_j**v**_i ξ_{i,j}**v**_i = 0 and the weights ω_i = ¹/_{**v**_i(ξ_i)} ⟨σ|**v**_i⟩.

Output: The decomposition $\sigma = \sum_{i=1}^{r} \frac{1}{\mathbf{v}_i(\xi_i)} \langle \sigma | \mathbf{v}_i \rangle \mathbf{e}_{\xi_i}(\mathbf{y}).$

Decomposition algorithms

Demo

Multivariate Prony method (1)

Let $h(t_1, t_2) = 2 + 32^{t_1}2^{t_2} - 3^{t_1}$, $\sigma = \sum_{\alpha \in \mathbb{N}^2} h(\alpha) \frac{y^{\alpha}}{\alpha!} = 2\mathfrak{e}_{(1,1)}(y) + 3\mathfrak{e}_{(2,2)}(y) - \mathfrak{e}_{(3,1)}(y)$.

Take
$$B = \{1, x_1, x_2\}$$
 and compute
$$H_0 := H_{\sigma}^{B,B} = \begin{bmatrix} h(0,0) & h(1,0) & h(0,1) \\ h(1,0) & h(2,0) & h(1,1) \\ h(0,1) & h(1,1) & h(0,2) \end{bmatrix} = \begin{bmatrix} 4 & 5 & 7 \\ 5 & 5 & 11 \\ 7 & 11 & 13 \end{bmatrix},$$

$$H_1 := H_{\sigma}^{B,x_1B} = \begin{bmatrix} 5 & 5 & 7 \\ 5 & -1 & 17 \\ 811 & 178 & 23 \end{bmatrix}, H_2 := H_{\sigma}^{B,x_2B} = \begin{bmatrix} 7 & 11 & 13 \\ 11 & 17 & 23 \\ 13 & 23 & 25 \end{bmatrix}.$$
Compute the generalized eigenvectors of $(aH_1 + bH_2, H_0)$:
$$U = \begin{bmatrix} 2 & -1 & 0 \\ -1/2 & 0 & 1/2 \\ -1/2 & 1 & -1/2 \end{bmatrix} \text{ and } H_0 U = \begin{bmatrix} 2 & 3 & -1 \\ 2 \times 1 & 3 \times 2 & -1 \times 3 \\ 2 \times 1 & 3 \times 2 & -1 \times 1 \end{bmatrix}.$$

• This yields the weights 2, 3, -1 and the roots (1, 1), (2, 2), (3, 1).

Multivariate Prony method (2)

$$\mathbf{f} (t_1, t_2) := \sum_{i=1}^{r} \omega_i e^{f_1 t_1 + f_2 t_2} \text{ with}$$

$$\mathbf{f} := \begin{bmatrix} 0.1 + 21.36283005 \, i & 1.5 + 32.67256360 \, i \\ 0.1 + 21.36283005 \, i & -0.5 + 79.16813488 \, i \\ -2.5 + 145.7698991 \, i & -10.0 + 517.1061508 \, i \end{bmatrix} \omega := \begin{bmatrix} 1.375328890 + 0.9992349291 \, i \\ 1.046162168 + 0.3399186938 \, i \\ 0.9 \\ -9.2 \end{bmatrix}$$

For the sampling $[\frac{1}{50}, \frac{1}{170}]$, $B = \{1, x_1, x_2, x_1x_2\}$, the SVD of $H_{\sigma}^{B,B}$ is

[33.1196344300301391, 14.3767453860219057, 0.244096952193142480, 0.0230734326225932214]

and the computed decomposition is

Sparse interpolation

$$f(\mathbf{x}) = \sum_{i=1}^{r} \omega_i \, \mathbf{x}^{\alpha_i} \quad \Rightarrow \quad \sigma = \sum_{\gamma} f(\varphi^{\gamma}) \, \frac{\mathbf{y}^{\gamma}}{\gamma!} = \sum_{i=1}^{r} \omega_i \, \mathbf{e}_{\varphi^{\alpha_i}}(\mathbf{y})$$

Example: $f(x_1, x_2) = x_1^{33}x_2^{12} - 5x_1x_2^{45} + 101.$

- Compute $\sigma_{\alpha} = f(\varphi_1^{\alpha_1}, \varphi_2^{\alpha_2})$ for $\alpha_1 + \alpha_2 \leq 3$ and $\varphi_1 = \varphi_2 = e^{\frac{2i\pi}{50}}$.
- Compute the Hankel matrix $H_{\sigma}^{1,2}$:

 97.00000
 97.01771 + 3.93695 i
 95.50360 - 1.47099 i
 98.46280 + 4.88062 i
 97.42748 + 1.82098 i

 97.01771 + 3.93695 i
 98.46280 + 4.88062 i
 97.42748 + 1.82098 i
 102.35770 + 3.77300 i
 99.50853 + 5.29465 i

 95.50360 - 1.47099 i
 97.42748 + 1.82098 i
 95.73130 - .33862 i
 99.50853 + 5.29465 i
 95.42134 + 1.47250 i

• Deduce the decomposition of $\sigma = \sum_{i=1}^{3} \omega_i \mathbf{e}_{\xi_i}$:

 $\Xi = \begin{bmatrix} 0.99211 + 0.12533i & 0.80902 - 0.58779i \\ 1.00000 + 4.86234e^{-11}i & 1.00000 - 6.91726e^{-10}i \\ -0.53583 - 0.84433i & 0.06279 + 0.99803i \end{bmatrix} \omega = \begin{bmatrix} -5.00000 - 4.43772e^{-7}i \\ 101.00000 + 4.65640e^{-7}i \\ 1.00000 - 1.92279e^{-8}i \end{bmatrix}$

> and the exponents $\frac{50}{2\pi i}$ mod 50 of the terms of f:

$$\begin{array}{ll} 1.00000-0.414119e^{-7}\,i & -5.00000+0.270858e^{-6}\,i, \\ 0.386933e^{-9}+0.137963e^{-8}\,i & -0.550458e^{-8}-0.38761e^{-8}\,i \\ -17.00000-0.100085e^{-6}\,i & 12.00000+0.700984e^{-6}\,i \end{array}$$

Symmetric tensor decomposition

$$\tau = (\mathbf{x}_0 - \mathbf{x}_1 + 3\mathbf{x}_2)^4 + (\mathbf{x}_0 + \mathbf{x}_1 + \mathbf{x}_2)^4 - 3(\mathbf{x}_0 + 2\mathbf{x}_1 + 2\mathbf{x}_2)^4$$

= $-\mathbf{x}_0^4 - 24\mathbf{x}_0^3\mathbf{x}_1 - 8\mathbf{x}_0^3\mathbf{x}_2 - 60\mathbf{x}_0^2\mathbf{x}_1^2 - 168\mathbf{x}_0^2\mathbf{x}_1\mathbf{x}_2 - 12\mathbf{x}_0^2\mathbf{x}_2^2$
 $-96\mathbf{x}_0\mathbf{x}_1^3 - 240\mathbf{x}_0\mathbf{x}_1^2\mathbf{x}_2 - 384\mathbf{x}_0\mathbf{x}_1\mathbf{x}_2^2 + 16\mathbf{x}_0\mathbf{x}_2^3 - 46\mathbf{x}_1^4 - 200\mathbf{x}_1^3\mathbf{x}_2$
 $-228\mathbf{x}_1^2\mathbf{x}_2^2 - 296\mathbf{x}_1\mathbf{x}_2^3 + 34\mathbf{x}_2^4$

 $\tau^* \quad = \quad \mathfrak{e}_{(-1,3)}(\mathbf{y}) + \mathfrak{e}_{(1,1)}(\mathbf{y}) - \mathfrak{le}_{(2,2)}(\mathbf{y}) \qquad (\textit{by apolarity})$

	[^{−1}	-2	-6	$^{-2}$	-14	-10
	-2	-2	-14	4	-32	-20
$\mu^{2,2}$.	-6	-14	-10	-32	-20	-24
$\Pi_{\tau^*} :=$	-2	4	-32	34	-74	-38
	-14	-32	-20	-74	-38	-50
	L _10	-20	-24	-38	-50	-46

For $B = \{1, x_2, x_1\}$,

$$H_{\tau^*}^{B,B} = \begin{bmatrix} -1 & -2 & -6 \\ -2 & -2 & -14 \\ -6 & -14 & -10 \end{bmatrix}, H_{\tau^*}^{B,x_1B} = \begin{bmatrix} -6 & -14 & -10 \\ -14 & -32 & -20 \\ -10 & -20 & -24 \end{bmatrix}, H_{\tau^*}^{B,x_2B} = \begin{bmatrix} -2 & -2 & -14 \\ -2 & 4 & -32 \\ -14 & -32 & -20 \end{bmatrix}$$

Decomposition algorithms

• The matrix of multiplication by x_1 in $B = \{1, x_2, x_1\}$ is

$$M_1 = (H_{\tau^*}^{B,B})^{-1} H_{\tau^*}^{B,x_1B} = \begin{bmatrix} 0 & -2 & -2 \\ 0 & \frac{1}{2} & \frac{3}{2} \\ 1 & \frac{5}{2} & \frac{3}{2} \end{bmatrix}.$$

• Its eigenvalues are [-1, 1, 2] and the eigenvectors:

$$U := \begin{bmatrix} 0 & -2 & -1 \\ \frac{1}{2} & \frac{3}{4} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$$

that is the polynomials

$$U(x) = \begin{bmatrix} \frac{1}{2}x_2 - \frac{1}{2}x_1 & -2 + \frac{3}{4}x_2 + \frac{1}{4}x_1 & -1 + \frac{1}{2}x_2 + \frac{1}{2}x_1 \end{bmatrix}.$$

We deduce the weights and the frequencies:

$$H_{\tau*}^{[1,x_1,x_2],U} = \begin{bmatrix} 1 & 1 & -3 \\ 1 \times -1 & 1 \times 1 & -3 \times 2 \\ 1 \times 3 & 1 \times 1 & -3 \times 2 \end{bmatrix}.$$

Weights: 1, 1, -3; frequencies: (-1, 3), (1, 1), (2, 2). Decomposition: $\tau^*(\mathbf{y}) = \mathfrak{e}_{(-1,3)}(\mathbf{y}) + \mathfrak{e}_{(1,1)}(\mathbf{y}) - 3\mathfrak{e}_{(2,2)}(\mathbf{y}) + (\mathbf{y})^4$

B. Mourrain

Phylogenetic trees

Problem: study probability vectors for genes [A, C, G, T] and the transitions described by Markov matrices M^i . **Example:**

Ancestor :		\mathcal{A}	
Transitions :	M^1	M^2	M^3
Species :	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3

For $i_1, i_2, i_3 \in \{A, C, G, T\}$, the probability to observe i_1, i_2, i_3 is

$$p_{i_1,i_2,i_3} = \sum_{k=1}^4 \pi_k \, M_{k,i_1}^1 M_{k,i_2}^2 M_{k,i_3}^3 \Leftrightarrow \mathbf{p} = \sum_{\mathbf{k}=1}^4 \pi_\mathbf{k} \, \mathbf{u}_\mathbf{k} \otimes \mathbf{v}_\mathbf{k} \otimes \mathbf{w}_\mathbf{k}$$

where $\mathbf{u}_k = (M_{k,1}^1, \dots, M_{k,4}^1), \mathbf{v}_k = (M_{k,1}^2, \dots, M_{k,4}^2), \mathbf{w}_k = (M_{k,1}^3, \dots, M_{k,4}^3).$ \mathbf{w} p is a tensor $\in \mathbb{K}^4 \otimes \mathbb{K}^4 \otimes \mathbb{K}^4$ of rank ≤ 4 . \mathbf{w} Its decomposition yields the M^i and the ancestor probabibility (π_j) .

A general framework

- $\blacktriangleright~\mathfrak{F}$ the functional space, in which the "signal" lives.
- ▶ $S_1, \ldots, S_n : \mathfrak{F} \to \mathfrak{F}$ commuting linear operators: $S_i \circ S_j = S_j \circ S_i$.
- $\Delta : h \in \mathfrak{F} \mapsto \Delta[h] \in \mathbb{C}$ a linear functional on \mathfrak{F} .

Generating series associated to $h \in \mathfrak{F}$:

$$\sigma_h(\mathbf{y}) = \sum_{\alpha \in \mathbb{N}^n} \Delta[S^{\alpha}(h)] \frac{\mathbf{y}^{lpha}}{lpha!} = \sum_{\alpha \in \mathbb{N}^n} \sigma_{lpha} \frac{\mathbf{y}^{lpha}}{lpha!}.$$

Eigenfunctions:

$$S_j(E) = \xi_j E, j = 1, \ldots, n \Rightarrow \sigma_E = \omega \, \mathfrak{e}_{\xi}(\mathbf{y}).$$

Generalized eigenfunctions:

$$S_j(E_k) = \xi_j E_k + \sum_{k' < k} m_{j,k'} E_{k'} \Rightarrow \sigma_{E_k} = \omega_i(\mathbf{y}) \mathfrak{e}_{\xi}(\mathbf{y}).$$

■ If $h \mapsto \sigma_h$ is injective \Rightarrow unique decomposition of f as a linear combination of generalized eigenfunctions.

B. Mourrain

Decomposition algorithms

Sum of polynomial-exponential functions

Eigenfunctions: $e^{\mathbf{f}\cdot\mathbf{x}}$; generalized eigenfunctions: $\omega(\mathbf{x})e^{\mathbf{f}\cdot\mathbf{x}}$;

$$\begin{split} h(\mathbf{x}) &= \sum_{i=1}^{r'} g_i(\mathbf{x}) e^{\mathbf{f}_i \mathbf{x}} + r(\mathbf{x}) \text{ with } g_i(\mathbf{x}) \in \mathbb{C}[\mathbf{x}], \ \mathbf{f}_i \in \mathbb{C}^n \text{ and } r(\delta \odot \alpha) = \mathbf{0}, \\ \forall \alpha \in \mathbb{N}^n, \text{ iff} \end{split}$$

$$\sigma_h(\mathbf{y}) = \sum_{i=1}^{r} \omega_i(\mathbf{y}) \mathfrak{e}_{\xi_i}(\mathbf{y})$$

with $\xi_i = e^{\mathbf{f}_i} \in \mathcal{V}(\ker H_{\sigma_h}) \subset \mathbb{C}^n$, $\omega_i(\mathbf{x}) = \sum_{\alpha} g_{i,\alpha} \omega_{\alpha}$ for $g_i = \sum_{\alpha} g_{i,\alpha} \mathbf{x}^{\alpha}$.

Solution $\sigma_{\alpha} = h(\alpha_1 \delta_1, \dots, \alpha_n \delta_n).$

B. Mourrain

Sparse interpolation of PolyLog functions

Generating series of h: $\sigma_h(\mathbf{y}) = \sum_{\alpha \in \mathbb{N}^n} h(\lambda_1^{\alpha_1}, \dots, \lambda_n^{\alpha_n}) \frac{\mathbf{y}^{\alpha}}{\alpha!}$. Eigenfunctions: \mathbf{x}^{γ} ; generalized eigenfunctions: $\log^{\beta}(\mathbf{x})\mathbf{x}^{\gamma}$.

 $h = \sum_{i=1}^{r'} \sum_{\beta \in B_i} \omega_{i,\beta} \log^{\beta}(\mathbf{x}) \mathbf{x}^{\gamma_i} \text{ iff the generating series } \sigma_h \text{ is of the form}$ $\sigma_h(\mathbf{y}) = \sum_{i=1}^{r'} \omega_i(\mathbf{y}) \mathfrak{e}_{\xi_i}(\mathbf{y})$

with $\xi_i = (\lambda_1^{\gamma_{i,1}}, \dots, \lambda_n^{\gamma_{i,n}}) \in \mathbb{C}^n$ and $\omega_i(\mathbf{y}) = \sum_{\beta \in B_i} \omega_{i,\beta} \mathbf{y}^{\beta} \in \mathbb{C}[\mathbf{y}].$

Solution from the moments $\sigma_{\alpha} = h(\lambda_1^{\alpha_1}, \dots, \lambda_n^{\alpha_n}).$

Sparse reconstruction from Fourier coefficients

F = *L*²(Ω); *S_i* : *h*(*x*) ∈ *L*²(Ω) → *e*^{2π x_i/T_i} *h*(*x*) ∈ *L*²(Ω) is the multiplication by *e*^{2π x_i/T_i};
Δ : *h*(*x*) ∈ *O*'_C → ∫ *h*(*x*)*dx* ∈ ℂ.

The moments of f are

$$\sigma_{\gamma} = \frac{1}{\prod_{j=1}^{n} T_{j}} \int f(x) e^{-2\pi i \sum_{j=1}^{n} \frac{\gamma_{j} x_{j}}{T_{j}}} dx$$

Eigenfunctions: δ_{ξ} ; generalized eigenfunctions: $\delta_{\xi}^{(\alpha)}$. For $f \in L^2(\Omega)$ and $\sigma = (\sigma_{\gamma})_{\gamma \in \mathbb{Z}^n}$ its Fourier coefficients,

$$\Gamma_{\sigma}: (\rho_{\beta})_{\beta \in \mathbb{Z}^n} \in L^2(\mathbb{Z}^n) \mapsto \left(\sum_{\beta} \sigma_{\alpha+\beta} \rho_{\beta}\right)_{\alpha \in \mathbb{Z}^n} \in L^2(\mathbb{Z}^n).$$

$$\begin{split} &\Gamma_{\sigma} \text{ is of finite rank } r \text{ if and only if } f = \sum_{i=1}^{r'} \sum_{\alpha \in A_i \subset \mathbb{N}^n} \omega_{i,\alpha} \delta_{\xi_i}^{(\alpha)} \text{ with } \\ &\xi_i = (\xi_{i,1}, \dots, \xi_{i,n}) \in \Omega, \ \omega_{i,\alpha} \in \mathbb{C} \text{ and } r = \sum_{i=1}^{r'} \mu(\sum_{\alpha \in A_i} \omega_{i,\alpha} \mathbf{y}^{\alpha}) \\ & \text{B. Mourrain} & \text{From moments to sparse representations} \end{cases}$$

Other applications

- Decomposition of measures as sums of spikes from moments (images, spectroscopy, radar, astronomy, ...)
- Decomposition of convolution operators of finite rank
- Vanishing ideal of points: $\sigma = \sum_{i=1}^{r} \mathfrak{e}_{\xi_i}(\mathbf{y})$
- Change of ordering for Grobner bases or change of bases for zero-dimensional ideals: σ_α = ⟨u, N(x^α)⟩,

. . .

1 Decomposition algorithms

3 The variety of missing moments

Low rank decomposition of Hankel matrices

Rank 1 Hankel matrices: $H_{\xi} = [\xi^{\alpha+\beta}]_{\alpha\in A,\beta\in B}$ for some $\xi\in \mathbb{K}^n$ or \mathbb{P}^n .

Rank r Hankel matrices are not necessarily the sum of r rank one Hankel matrices.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \lambda_1 \begin{bmatrix} 1 & \xi_1 & \xi_1^2 \\ \xi_1 & \xi_1^2 & \xi_1^3 \\ \xi_1^2 & \xi_1^3 & \xi_1^4 \end{bmatrix} + \lambda_2 \begin{bmatrix} 1 & \xi_2 & \xi_2^2 \\ \xi_2 & \xi_2^2 & \xi_2^3 \\ \xi_2^2 & \xi_2^3 & \xi_2^4 \end{bmatrix}$$

but

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \begin{bmatrix} 1 & \epsilon & \epsilon^2 \\ \epsilon & \epsilon^2 & \epsilon^3 \\ \epsilon^2 & \epsilon^3 & \epsilon^4 \end{bmatrix} - \frac{1}{2\epsilon} \begin{bmatrix} 1 & -\epsilon & \epsilon^2 \\ -\epsilon & \epsilon^2 & -\epsilon^3 \\ \epsilon^2 & -\epsilon^3 & \epsilon^4 \end{bmatrix}$$

Symbol: $y = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} (e^{\epsilon y} - e^{-\epsilon y}).$

Structured Low rank Decomposition

Decomposition in sum of Hankel operators associated to symbols $\omega(y)\mathbf{e}_{\xi}(y)$ with $\omega(y) \in \mathbb{K}[\mathbf{y}], \xi \in \mathbb{C}^n$.

$$\sigma = \sum_{i=1}^{r} \omega_{i} \mathfrak{e}_{\xi_{i}}(\mathbf{y}) \Rightarrow$$

$$H_{\sigma}^{A,B} = V_{A}(\xi_{1}, \dots, \xi_{r}) \Delta(\omega_{1}, \dots, \omega_{r}) V_{B}(\xi_{1}, \dots, \xi_{r})^{t}$$

$$H_{g\star\sigma}^{A,B} = V_{A}(\xi_{1}, \dots, \xi_{r}) \Delta(\omega_{1}g(\xi_{1}), \dots, \omega_{r}g(\xi_{r})) V_{B}(\xi_{1}, \dots, \xi_{r})^{t}$$
where $V_{A}(\xi_{1}, \dots, \xi_{r}) = [\xi_{j}^{\alpha_{i}}]_{1 \leq i \leq |A|, 1 \leq j \leq r}, \Delta(\cdots)$ diagonal matrix.

$$\sigma = \sum_{i=1}^{r} \omega_{i}(\mathbf{y}) \mathfrak{e}_{\xi_{i}}(\mathbf{y}) \Rightarrow$$

$$H_{\sigma}^{A,B} = W_{A;\Gamma}(\xi) \Delta_{\omega}^{\Gamma} W_{B;\Gamma}(\xi)^{t}$$

$$H^{A,B}_{g\star\sigma} = W_{A;\Gamma}(\xi)\Delta^{\Gamma}_{g\star\omega}W_{B;\Gamma}(\xi)^t$$

where $W_{A;\Gamma}(\xi)$ Wronskian, $\Delta_{g\star\omega}^{\Gamma}$ block diagonal.

B. Mourrain

Symmetric tensors of low rank (joint work with A. Oneto)

For $\psi \in S_d$ of degree d, with a decomposition $\psi = \sum_{i=1}^r \langle \xi_i, \overline{\mathbf{x}} \rangle^d$ and for $0 \le k \le d - k$,

$$\mathcal{H}^{d-k,k}_{\psi^*} = V_{d-k}(\Xi) \ V^t_k(\Xi)$$

where $\Xi = (\xi_1, \ldots, \xi_r) \in (\mathbb{K}^{n+1})^r$, $V_k(\Xi)$ is the Vandermonde matrix of Ξ at the monomials of deg. k.

Notation

 $\blacktriangleright \ \psi_k^{\perp} = \ker H^{d-k,k}_{\psi^*}$

•
$$h(k) = \dim S_k/\psi_k^\perp = \operatorname{rank} H_{\psi^*}^{d-k,k}$$

• $I(\Xi)$ defining ideal of the points Ξ

Apolarity lemma

 Ξ is apolar to ψ (i.e. appears in a decomposition of ψ) iff $I(\Xi)_k \subset \psi_k^{\perp}$ for any $k \in \mathbb{N}$.

Proof.
$$\psi^* \in \langle \mathfrak{e}_{\xi_1}, \ldots, \mathfrak{e}_{\xi_r} \rangle \subset S^*_d$$
.

The **regularity** of
$$\Xi$$
 is $\rho(\Xi) = \min\{k \in \mathbb{N} \mid \exists u_1, \dots, u_r \in S_k \text{ s.t. } u_i(\xi_j) = \delta_{i,j}\}.$

Regularity lemma

Let $\psi \in S_d$ and let Ξ be a minimal set of points apolar to ψ . Then, $I(\Xi)_k = \psi_k^{\perp} \quad \text{for } 0 \le k \le d - \rho(\Xi).$

Proof.
$$\psi_k^{\perp} = \ker H_{\psi^*}^{d-k,k} = V_{d-k}(\Xi) V_k^t(\Xi), I(\Xi)_k = \ker V_k^t(\Xi)$$
 and $V_{d-k}(\Xi)$ injective for $d-k \ge \rho(\Xi)$.

Theorem

Let $\psi \in S_d$ and let Ξ be a minimal set of points apolar to ψ . If $d \ge 2\rho(\Xi) + 1$, then $I(\Xi) = (\psi_{\le \rho(\Xi)+1}^{\perp}).$ Moreover, Ξ is the unique minimal set of points apolar to ψ . A set of **essential variables** of ψ is a minimal set of linear forms $\ell_1, \ldots, \ell_N \in S$, such that $\psi \in \mathbb{C}[\ell_1, \ldots, \ell_N]$.

Proposition

- [Car06] the number of essential variables is $h_{\psi}(1)$;
- [CC017] any minimal decomposition of ψ involves only linear forms in the essential variables.

The Waring locus of ψ is the locus of linear forms that can appear in a minimal decomposition of ψ , i.e.,

$$\mathcal{W}_{\psi} := \left\{ [\ell] \in \mathbb{P}(\mathcal{S}_1) \mid \exists \ell_2, \dots, \ell_r, \; r = \mathrm{rank}(\psi), \; \mathsf{s.t.} \; \psi \in \left\langle \ell^d, \ell_2^d, \dots, \ell_r^d
ight
angle
ight\}$$

The complement is forbidden locus denoted $\mathcal{F}_{\psi} := \mathbb{P}^n \setminus \mathcal{W}_{\psi}$.

Tensor with 2 **essential variables**

(Sylvester method)

Let $\psi(x_0, x_1) \in S_d = \mathbb{K}[x_0, x_1]_d$. The Hilbert function of \mathcal{A}_{ψ^*} is of the form:

with $(\psi^{\perp}) = (G_1, G_2)$ of degree $0 \le d_1 \le d_2 \le d$ with $d_1 + d_2 = d + 2$.

- If G₁ has simple roots, then ψ is of rank d₁ = deg(G₁) and the roots of G₁ are the unique minimal set apolar to ψ.
- Otherwise, ψ is of rank d₂ = deg(G₂) and W_ψ is dense in P¹. For a generic choice of A ∈ S_{d₂-d₁}, the roots of AG₁ + G₂ are a minimal set apolar to ψ.

Cases of rank 4

For $\psi \in S_d$ of rank 4.

 ψ has two essential variables ($h_{\psi}(1) = 2$): $\psi^{\perp} = (L_1, \dots, L_{n-1}, G_1, G_2)$, where deg $(G_i) = d_i$ and $d_1 < d_2$. In particular, it has to be d > 4 and: (i) if d = 4, 5, 6, then $d_2 = 4$, and minimal apolar sets of points are defined by ideals $I(\Xi) = (L_1, \ldots, L_{n-1}, HG_1 + \alpha G_2)$, for a general choice of $H \in T_{6-d}$ and $\alpha \in \mathbb{C}$: (ii) if d > 7, then $d_1 = 4$ and the unique minimal apolar set of points is given by $I(\Xi) = (L_1, \ldots, L_{n-1}, G_1).$

 ψ has three essential variables ($h_{\psi}(1) = 3$) and a minimal apolar set Ξ of type (b):

- (i) if d = 3, then V(ψ₂[⊥]) = P + D, where P is a reduced point and D is connected scheme of length 2 whose linear span is a line L_D; Any minimal apolar set is of the type P ∪ Ξ', with Ξ' ⊂ L_D;
- (ii) if d = 4, then $h_{\psi}(2) = 4$, $\mathcal{V}(\psi_2^{\perp}) = P \cup L$, where P is a reduced point and L is a line not passing through P;

Any minimal apolar set is of the type $P \cup \Xi'$, where $\Xi' \subset L$.

(iii) if $d \ge 5$, then $h_{\psi}(2) = 4$, $\mathcal{V}(\psi_2^{\perp}) = P \cup L$, where P is a reduced point and L is a line not passing through P and (ψ_3^{\perp}) defines the unique minimal apolar set.

 ψ has three essential variables ($h_{\psi}(1) = 3$) and a minimal apolar set Ξ of type (c):

- (i) if d = 3, then $\mathcal{V}(\psi_2^{\perp}) = \emptyset$ and \mathcal{W}_{ψ} is dense in the plane of essential variables;
- (ii) if d ≥ 4, there is a unique minimal apolar set of points given by I(Ξ) = (ψ[⊥]₂).

 ψ has four essential variables:

there is a unique minimal apolar set of points given by $I(\Xi) = (\psi_2^{\perp}).$

Classification/algorithm for rank ≤ 5

	HILBERT	EXTRA	Algorithm to find a minimal apolar set
(1) (2)	[1*] [1,2,*,2,1]		$rk(f) = 1$ and (f_1^{\perp}) defines the point apolar to f f has two essential variables and Sylvester algorithm is applied:
			(i) if $f_{l(f)}^{\perp}$ defines a set of $l(f)$ reduced points, then $rk(f) = l(f)$;
			(ii) otherwise, $rk(f) = d + 2 - l(f)$ and a minimal apolar set
			is given by the principal ideal generated by
(3)	[1,3,3,1]	$Z(f_2^{\perp}) = \emptyset$	a generic form $g \in f_{d+2-l(f)}^{\perp}$ a generic pair of conics q_1, q_2 of f_2^{\perp} defines 4 points and $\operatorname{rk}(f) = 4$
(4)	[1,3,3,1]	$Z(f_2^-) = P \cup D,$ P is simple point D connected, 0-dim deg(D) = 2	$\operatorname{rk}(f) = 4$ and P is a point of any minimal apolar set; then, we find the scalar c such that $f' = f - c \ell_P^3$ has two essential variables and we apply Sylvester algorithm to f' as in (2)
(5)	[1,3,3,1]	$Z(f_2^{\perp}) = D$	$rk(f) = 5$ and, for a generic P and a generic $c \neq 0$ such that $f' = f + cf^3$ is a termory cubic of rank 4 and we apply (4) to f'
		deg(D) = 3	$j = j + ce_p b a ternal j cable of rank + and we apply (+) to j$
(6)	[1,3,3*,3,1]	$Z(f_2^{\perp}) = \{P_1, P_2, P_3\}$ P_i 's are simple points	$\operatorname{rk}(f) = 3$ and the unique minimal apolar set is $Z(f_2^{\perp})$
		$Z(f_2^{\perp}) = P \cup L$	P is a point of any minimal apolar set; then, we find
(7)	[1, 3, *, 3, 1]	P is simple point	the scalar c such that $f' = f - c\ell_p^d$ has two essential variables
		L is line, P ∉ L	and we apply Sylvester algorithm to f' as in (2)
(8)	[1,3,4*,3,1]	$Z(f_2^{\perp}) = \{P_1, \dots, P_4\}$	$rk(f) = 4$ and the unique minimal apolar set is $Z(f_2^{\perp})$
		P _i 's are simple points	
(9)	[1,3,5,3,1]	$Z(f_2^{\perp}) = C$	let P be a generic point on C and c be a scalar such that
		C is irreducible quadric	$f' = f - c\ell_p^4 has h_{f'}(2) = 4.$
			(i) if Z((f')[⊥]₂) = {P₁,, P₄} is a set of 4 reduced points, then,
			$rk(f) = 5$, and a minimal set apolar to f is $\{P, P_1, \dots, P_4\}$;
			(ii) otherwise, rk(f) > 5
(10)	[1,3,5,3,1]	$Z(f_2^{\perp}) = L_1 \cup L_2$	let P_i be a generic point on L_i , for $i = 1, 2$, respectively, and
		L _i 'are distinct lines	c_i be a scalar such that $f_i = f - c_i \ell_{p_i}^4$ has $h_{f_i}(2) = 4$, for $i = 1, 2$.
			(i) if Z((f [⊥] _i) ₂) = {P ₁ ,,P ₄ }, for either i = 1 or i = 2, then,
			$rk(f) = 5$, and a minimal apolar set of f is $\{P, P_1,, P_4\}$;
			(ii) otherwise, rk(f) > 5
(11)	$[1, 3, 5, 5^*, 3, 1]$	$Z(f_3^{\perp}) = \{P_1, \dots, P_5\}$	$rk(f) = 5$ and the unique minimal apolar set is $Z(f_3^{\perp})$
		P _i 's are reduced points	
(12)	[1,4,4,1]	$Z(f_2^{\perp}) = P \cup H$	P is a point of any minimal apolar set; then, we find
		P is a reduced point	the scalar c such that $f' = f - c\ell_p^3$ has three essential variables
		H is a plane, P ∉ H	and we apply (3) or (4) to f'
(13)	[1,4,5*,4,1]	$Z(f_2^{\perp}) = \{P_1, \dots, P_5\}$	$rk(f) = 5$ and the unique minimal apolar set is $Z(f_2^{\perp})$
(14)	[1,5,5*,5,1]	$Z(f_2^{\perp}) = \{P_1, \dots, P_5\}$	$rk(f) = 5$ and the unique minimal apolar set is $Z(f_2^{\perp})$

B. Mourrain

High rank and small forbidden locus

Definition: generic rank = rank of tensors on a dense open subset of the set of tensors.

Theorem (Alexander, Hirschovitz, 1995)

The generic rank of a tensor in $\mathbb{K}[x_0, ..., x_n]_d$ is $\lceil \frac{1}{n+1} \binom{n+d}{d} \rceil$, except for d = 2 and $(n, d) \in \{(2, 4), (3, 4), (4, 3), (4, 4)\}.$

Theorem (Oneto, , 2018)

Let g be the generic rank of tensors of degree d in \mathbb{P}^n . Let $\psi \in S_d$ with $r = \operatorname{rank}(\psi)$. If r > g, then \mathcal{W}_{ψ} is dense in \mathbb{P}^n .

The variety of missing moments

1 Decomposition algorithms

2 Low rank classification

Flat extension of a truncated moment matrix For (monomial) sets $B \subset C$, $B' \subset C'$, $\overline{B} = C \setminus B$, $\overline{B}' = C' \setminus B'$.

$$\mathbf{H}_{\sigma}^{\mathbf{C},\mathbf{C}'} = \left(\langle \sigma \mid \mathbf{x}^{\alpha+\beta} \rangle \right)_{\alpha\in\mathbf{C},\beta\in\mathbf{C}'} = \left[\begin{array}{c} \mathbf{H}_{\sigma}^{\mathbf{B},\mathbf{B}'} \mid \mathbf{H}_{\sigma}^{\mathbf{B},\mathbf{B}'} \\ \hline \mathbf{H}_{\sigma}^{\mathbf{B},\mathbf{B}'} \mid \mathbf{H}_{\sigma}^{\mathbf{B},\mathbf{B}'} \end{array} \right],$$

when

$$\operatorname{rank} \mathbf{H}_{\sigma}^{\mathbf{C},\mathbf{C}'} = \operatorname{rank} \mathbf{H}_{\sigma}^{\mathbf{B},\mathbf{B}'}$$

For
$$B \subset \mathbb{K}[\mathbf{x}]$$
, let $B^+ = B \cup x_1 B \cdots x_n B$, $\partial B = B^+ \setminus B$.

Theorem

Assume $H_{\sigma}^{B,B'}$ invertible with |B| = |B'| = r and $C \supset B^+, C' \supset B'^+$ connected to 1 ($m \in C \Rightarrow m = 1$ or $m = x_j m'$ with $m' \in C$). $H_{\sigma}^{C,C'}$ is a flat extension of $H_{\sigma}^{B,B'}$ \Leftrightarrow The operators $M_j := H_{\sigma}^{B,x_jB}(H_{\sigma}^{B,B})^{-1}$ commute. $\Leftrightarrow \exists! \tilde{\sigma} \in \mathcal{Pol}\mathcal{E}xp \ s.t. \ rank H_{\tilde{\sigma}} = r \ and \ \tilde{\sigma}_{|C\cdot C'} = \sigma.$

Example

$$\sigma = 8 + 17 z_2 - 4 z_1 + 15 z_2^2 + 14 z_1 z_2 - 16 z_1^2 + 47 z_2^3 - 6 z_1 z_2^2 + 34 z_1^2 z_2 - 52 z_1^3 + 51 z_2^4 + 38 z_1 z_2^3 - 18 z_1^2 z_2^2 + 86 z_1^3 z_2 - 160 z_1^4$$

moment series $\in \mathbb{K}[[z_1, z_2]]$, truncated in degree 4.

$$[H_{\sigma}^{B^+,B^+}] = \begin{bmatrix} 8 & -4 & 17 & -16 & 14 & 15 & -52 & 34 & -6 & 47 \\ -4 & -16 & 14 & -52 & 34 & -6 & -160 & 86 & -18 & 38 \\ 17 & 14 & 15 & 34 & -6 & 47 & 86 & -18 & 38 & 51 \\ -16 & -52 & 34 & -160 & 86 & -18 & h_1 & h_2 & h_3 & h_4 & h_5 \\ 14 & 34 & -6 & 86 & -18 & 38 & h_2 & h_3 & h_4 & h_5 \\ 15 & -6 & 47 & -18 & 38 & 51 & h_3 & h_4 & h_5 & h_6 \\ -52 & -160 & 86 & h_1 & h_2 & h_3 & h_7 & h_8 & h_9 & h_{10} \\ 34 & 86 & -18 & h_2 & h_3 & h_4 & h_5 & h_6 \\ -6 & -18 & 38 & h_3 & h_4 & h_5 & h_9 & h_{10} & h_{11} \\ 47 & 38 & 51 & h_4 & h_5 & h_6 & h_{10} & h_{11} & h_{12} & h_{13} \end{bmatrix}$$

where $B = \{1, x_1, x_2, x_1^2, x_1x_2, x_2^2\}.$

The variety of missing moments

Flat extension condition: rank $H_{\sigma}^{B^+,B^+} \leq 6$ implies

$$\begin{array}{c} -814592\,h_1^2 - 1351680\,h_1\,h_2 - 476864\,h_1\,h_3 - 599040\,h_2^2 - 301440\,h_2\,h_3 - 35072\,h_3^2 \\ -520892032\,h_1 - 396821760\,h_2 - 164529152\,h_3 + 1693440\,h_7 - 686394672128 = 0 \\ -814592\,h_2^2 - 1351680\,h_2\,h_3 - 476864\,h_2\,h_4 - 599040\,h_3^2 - 301440\,h_3\,h_4 - 35072\,h_4^2 \\ + 335275392\,h_2 + 257276160\,h_3 + 96277632\,h_4 + 1693440\,h_9 - 3490446128 = 0 \\ \vdots \\ -814592\,h_1\,h_3 - 675840\,h_1\,h_4 - 238432\,h_1\,h_5 - 675840\,h_2\,h_3 - 599040\,h_2\,h_4 - 150720\,h_2\,h_5 - 238432\,h_3^2 \\ - 150720\,h_3\,h_4 - 35072\,h_3\,h_5 + 6613440\,h_1 + 6641280\,h_2 - 264559616\,h_3 - 198410880\,h_4 - 82264576\,h_5 \\ + 1693440\,h_9 + 1312368000 = 0 \\ - 814592\,h_1\,h_4 - 675840\,h_1\,h_5 - 238432\,h_1\,h_5 - 675840\,h_2\,h_4 - 599040\,h_2\,h_5 - 150720\,h_2\,h_6 - 238432\,h_3\,h_4 \\ - 150720\,h_3\,h_5 - 35072\,h_3\,h_5 + 106430368\,h_1 + 81349440\,h_2 + 25713728\,h_3 - 260446016\,h_4 \\ - 198410880\,h_5 - 82264576\,h_6 + 1693440\,h_1 - 34550702464 = 0 \\ \end{array}$$

Solution set: an algebraic variety of dimension 3 and degree 52. A solution (among others) is $h_1 = -484$, $h_2 = 226$, $h_3 = -54$, $h_4 = 82$, $h_5 = -6$, $h_6 = 167$. $h_7 = -1456$, $h_8 = 614$, $h_9 = -162$, $h_{10} = 182$, $h_{11} = -18$, $h_{12} = 134$, $h_{13} = 195$. Decomposition of **rank 6** of the series with these computed moments:

$$\sigma \equiv (0.517 + 0.044 i) \mathbf{e}_{-0.830+1.593 i, -0.326-0.050 i} + (0.517 - 0.044 i) \mathbf{e}_{-0.830-1.593 i, -0.326+0.050 i} + 2.958 \mathbf{e}_{1.142, 0.836} + 4.583 \mathbf{e}_{0.956, -0.713} - (4.288 + 1.119 i) \mathbf{e}_{-0.838-0.130 i, 0.060-0.736 i} - (4.288 - 1.119 i) \mathbf{e}_{-0.838-0.130 i, 0.060-0.736 i}$$

General decomposition algorithm [BCMT10], [BS18]

• Perform a generic change of coordinates $\psi'(\bar{\mathbf{x}}) = \psi(T \bar{\mathbf{x}})$.

- For $r = \max \operatorname{rank} H_{\sigma}^{k,d-k}, \ldots$
 - ► For bases B, B' of size r, connected to 1 (e.g. B stable by division/Borel fixed stable by division);
 - **①** Find the (unknown) moments of $H_{\Lambda}^{B'^+,B^+}$ s.t.
 - $\cdot H^{B',B}_{\Lambda}$ invertible and
 - \cdot the operators $M_i = H^{x_i B', B}_{\Lambda}(H^{B', B}_{\Lambda})^{-1}$ commute.
 - 2 Deduce the decomposition of σ (Algorithm 1).
 - If the roots are simple and the decomposition is valid for the moments of ψ, stop and output a decomposition of ψ;

Challenges, open questions

- Numerical stability, correction of errors,
- Efficient construction of basis, complexity,
- Super-resolution, collision of points,
- Super-extrapolation,
- Best low rank approximation,

Thanks for your attention

. . .

References

Alessandra Bernardi, Jérôme Brachat, Pierre Comon, and Bernard Mourrain. General tensor decomposition, moment matrices and applications. Journal of Symbolic Computation, 52:51-71, 2013. Jérôme Brachat, Pierre Comon, Bernard Mourrain, and Elias P. Tsigaridas. Symmetric tensor decomposition. Linear Algebra and Applications, 433(11-12):1851-1872, Enrico Carlini Reducing the number of variables of a polynomial. In Algebraic geometry and geometric modeling, pages 237-247. Springer, 2006. Enrico Carlini, Maria Virginia Catalisano, and Alessandro Oneto. Waring loci and the Strassen conjecture.

Advances in Mathematics, 314:630-662, 2017.

Cédric Josz, Jean Bernard Lasserre, and Bernard Mourrain. Sparse polynomial interpolation: Compressed sensing, super resolution, or Prony? hal-01575325, ArXiv:1708.06187, August 2017. Monique Laurent and Bernard Mourrain. A generalized flat extension theorem for moment matrices. Archiv der Mathematik, 93(1):87–98, 2009.

Bernard Mourrain.

Polynomial-Exponential Decomposition from Moments. Foundations of Computational Mathematics, 2017. http://dx.doi.org/10.1007/s10208-017-9372-x.

Bernard Mourrain and Alessandro Oneto.

On minimal decompositions of low rank symmetric tensors.

preprint, https://hal.archives-ouvertes.fr/hal-01803571, May 2018.