Numerical Tensor Calculus

Wolfgang HackbuschWolfgang Hackbusch

Max-Planck-Institut für Mathematik in den Naturwissenschaften and University of Kiel

Inselstr. 22-26, D-04103 Leipzig, Germany wh@mis.mpg.de
http://www.mis.mpg.de/scicomp/hackbusch_e.html

Torino, September 12+14, 2018

Overview

Introduction:

- Tensors / Tensor operations / Problems in practice

Tensor Representations

- r-Term Format / Tensor Subspace Format / HOSVD

Hierarchical Format
Solution of Linear Systems
Variational Approach

- ALS Method / Study of Examples

Multivariate Cross Approximation
PDEs with stochastic coefficients
Minimal Subspaces
Properties of the HOSVD Projection
Graph-Based Formats

- TT Format / Cyclic Matrix Product Format

Tensorisation

1 Introduction: Tensors

1.1 Where do large-scale tensors appear?

The tensor space $\mathrm{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}$ with vector spaces $V_{j}(1 \leq j \leq d)$ is defined as (closure of)

$$
\operatorname{span}\left\{v^{(1)} \otimes v^{(2)} \otimes \ldots \otimes v^{(d)}: v^{(j)} \in V_{j}\right\}
$$

Finite dimensional case:
$V_{j}=\mathbb{R}^{n_{j}}=\mathbb{R}^{I_{j}}$ with $I_{j}=\left\{1, \ldots, n_{j}\right\}$.
Set $\mathbf{I}:=I_{1} \times I_{2} \times \ldots \times I_{d}$, then $\mathbf{V} \simeq \mathbb{R}^{\mathbf{I}}$, i.e., $\mathbf{v}=\left(\mathbf{v}_{\mathbf{i}}\right)_{\mathbf{i} \in \mathbf{I}}$.

Tensor product: $\quad \mathbf{v}=v^{(1)} \otimes v^{(2)} \otimes \ldots \otimes v^{(d)} \in \mathbb{R}^{\mathbf{I}}$ with $v^{(j)} \in \mathbb{R}^{I_{j}}$ defined as

$$
\mathbf{v}_{\mathbf{i}}=\mathbf{v}_{i_{1}, \ldots, i_{d}}=\mathbf{v}\left[i_{1}, \ldots, i_{d}\right]=v_{i_{1}}^{(1)} \cdot v_{i_{2}}^{(2)} \cdot \ldots \cdot v_{i_{d}}^{(d)} \quad \text { for } \mathbf{i}=\left(i_{1}, \ldots, i_{d}\right) \in \mathbf{I} .
$$

1.1.1 Functions

Multivariate functions f defined on a Cartesian product

$$
\Omega=\Omega_{1} \times \Omega_{2} \times \ldots \times \Omega_{d}
$$

are tensors.

For instance,

$$
L^{2}(\Omega)=L^{2}\left(\Omega_{1}\right) \otimes L^{2}\left(\Omega_{2}\right) \otimes \ldots \otimes L^{2}\left(\Omega_{d}\right)
$$

Tensor product of univariate functions:

$$
\left(\bigotimes_{j=1}^{d} f_{j}\right)\left(x_{1}, x_{2}, \ldots, x_{d}\right):=\prod_{j=1}^{d} f_{j}\left(x_{j}\right)
$$

The multivariate function may be the solution of a partial differential equation.

The numerical treatment replaces functions by finite-dimensional analogues (\rightarrow grid functions, finite-element functions).

1.1.2 Grid Functions

Discretisation in product grids $\omega=\omega_{1} \times \omega_{2} \times \ldots \times \omega_{d}$,
e.g., ω_{j} regular grid with n_{j} grid points.

Total number of grid points $N=\prod_{j=1}^{d} n_{j}$, e.g., n^{d}. Tensor space:

$$
\mathbb{R}^{N} \simeq \mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}} \otimes \ldots \otimes \mathbb{R}^{n_{d}}
$$

Small discretisation errors require large dimensions n_{j}.

Challenge: Huge dimensions like in ...

1) $n=1000000$ and $d=3$
2) $n=1000$ and $d=1000 \Rightarrow$

$$
N=1000^{1000}=10^{3000}
$$

1.1.3 Matrices or Operators

$$
\text { Let } \mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}, \quad \mathbf{W}=W_{1} \otimes W_{2} \otimes \ldots \otimes W_{d} \quad \text { be tensor spaces, }
$$

$$
A_{j}: V_{j} \rightarrow W_{j} \quad \text { linear mappings }(1 \leq j \leq d)
$$

The tensor product (Kronecker product)

$$
\mathbf{A}=A_{1} \otimes A_{2} \otimes \ldots \otimes A_{d}: \mathbf{V} \rightarrow \mathbf{W}
$$

is the mapping

$$
\mathbf{A}: v^{(1)} \otimes v^{(2)} \otimes \ldots \otimes v^{(d)} \mapsto A_{1} v^{(1)} \otimes A_{2} v^{(2)} \otimes \ldots \otimes A_{d} v^{(d)}
$$

If $A_{j} \in \mathbb{R}^{n \times n}$ then $\mathbf{A} \in \mathbb{R}^{n^{d} \times n^{d}}$.

Example: Poisson problem $-\Delta u=f$ in $[0,1]^{d}, u=0$ on Γ.

The differential operator has the form

$$
L=\frac{\partial^{2}}{\partial x_{1}^{2}} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes \frac{\partial^{2}}{\partial x_{d}^{2}}
$$

Discretise by difference scheme with n grid points per direction.
The system matrix is

$$
\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}
$$

Challenge: Approximate the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$, where $n=d=1000$, so that

$$
N=n^{d}=1000^{1000}=10^{3000} .
$$

Later result: required storage: $O\left(d n \log ^{2} \frac{1}{\varepsilon}\right)$

1.2 Tensor Operations

addition: $\mathbf{v}+\mathbf{w}$,
scalar product: $\langle\mathbf{v}, \mathbf{w}\rangle$

Hadamard product: $(\mathbf{v} \odot \mathbf{w})[\mathbf{i}]=\mathbf{v}[\mathbf{i}] \mathbf{w}[\mathbf{i}]$, pointwise product of functions

$$
\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \odot\left(\bigotimes_{j=1}^{d} w^{(j)}\right)=\bigotimes_{j=1}^{d} v^{(j)} \odot w^{(j)},
$$

convolution: $\mathbf{v}, \mathbf{w} \in \otimes_{j=1}^{d} \mathbb{R}^{n}: \mathbf{u}=\mathbf{v} \star \mathbf{w}$ with $\mathbf{u}_{\mathbf{i}}=\sum_{\mathbf{0} \leq \mathbf{k} \leq \mathbf{i}} \mathbf{v}_{\mathbf{i}-\mathbf{k}} \mathbf{w}_{\mathbf{k}}$

$$
\left(\bigotimes_{j=1}^{d} v^{(j)}\right) \star\left(\bigotimes_{j=1}^{d} w^{(j)}\right)=\bigotimes_{j=1}^{d} v^{(j)} \star w^{(j)} .
$$

1.3 High-Dimensional Problems in Practice

1) boundary value problems $L u=f$ in cubes or $\mathbb{R}^{3} \Rightarrow d=3, n_{j}$ large
2) Hartree-Fock equations (as 1))
3) Schrödinger equation ($d=3 \times$ number of electrons + antisymmetry $)$
4) bvp $L(p) u=f$ with parameters $p=\left(p_{1}, \ldots, p_{m}\right) \Rightarrow d=m+1$
5) bvp with stochastic coefficients \Rightarrow as 4) with $m=\infty$
6) coding of a d-variate function in Cartesian product $\Rightarrow d=d$
7) ...
8) Lyapunov equation $(A \otimes I+I \otimes A) \mathbf{x}=\mathbf{b}$

2 Tensor Representations

How to represent tensors with n^{d} entries by few data?

Classical formats:

- r-Term Format (Canonical Format)
- Tensor Subspace Format (Tucker Format)

More recent:

- Hierarchical Tensor Format

$2.1 \quad r$-Term Format (Canonical Format)

By definition, any algebraic tensor $\mathbf{v} \in \mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}$ has a representation

$$
\mathbf{v}=\sum_{\rho=1}^{r} v_{\rho}^{(1)} \otimes v_{\rho}^{(2)} \otimes \ldots \otimes v_{\rho}^{(d)} \quad \text { with } v_{\rho}^{(j)} \in V_{j}
$$

and suitable r. Set

$$
\mathcal{R}_{r}:=\left\{\sum_{\rho=1}^{r} v_{\rho}^{(1)} \otimes v_{\rho}^{(2)} \otimes \ldots \otimes v_{\rho}^{(d)}: v_{\rho}^{(j)} \in V_{j}\right\}
$$

Storage: $r d n$ (for $n=\operatorname{maxdim} V_{j}$).
If r is of moderate size, this format is advantageous.
Often, a tensor \mathbf{v} is replaced by an approximation $\mathbf{v}_{\varepsilon} \in \mathcal{R}_{r}$ with $r=r(\varepsilon)$.

$$
\operatorname{rank}(\mathbf{v}):=\min \left\{r: \mathbf{v} \in \mathcal{R}_{r}\right\}, \quad \mathcal{R}_{r}:=\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}(\mathbf{v}) \leq r\}
$$

Recall the matrix A discretising the Laplace equation:

$$
\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}
$$

REMARK: $\mathbf{A} \in \mathcal{R}_{d}$ and $\operatorname{rank}(\mathbf{A})=d$ (tensor rank, not matrix rank).
T_{j} : tridiagonal matrices of size $n \times n$.

Size of A: $N \times N$ with $N=n^{d}$.
E.g., $n=d=1000 \quad \Longrightarrow \quad N=n^{d}=1000^{1000}=10^{3000}$.

We aim at the inverse of $\mathbf{A} \in \mathbb{R}^{N \times N}$.

Solution: $\mathbf{A}^{-1} \approx \mathbf{B}_{r}$ with \mathbf{B}_{r} of the form

$$
\mathbf{B}_{r}=\sum_{i=1}^{r} a_{i} \bigotimes_{j=1}^{d} \exp \left(-b_{i} T_{j}\right)
$$

where $a_{i}, b_{i}>0$ are explicitly known.

Proof. Approximate $1 / x$ in $[1, \infty)$ by exponential sums $E_{r}(x)=\sum_{i=1}^{r} a_{i} \exp \left(-b_{i} x\right)$. The best approximation satisfies

$$
\left\|\frac{1}{\bullet}-E_{r}(\cdot)\right\|_{\infty,[1, \infty)} \leq O\left(\exp \left(-c r^{1 / 2}\right)\right)
$$

For a positive definite matrix with $\sigma(\mathbf{A}) \subset[1, \infty), E_{r}(\mathbf{A})$ approximates \mathbf{A}^{-1} with

$$
\left\|E_{r}(\mathbf{A})-\mathbf{A}^{-1}\right\|_{2} \leq O\left(\exp \left(-c r^{1 / 2}\right)\right)
$$

In the case of $\mathbf{A}=T_{1} \otimes I \otimes \ldots \otimes I+\ldots+I \otimes \ldots \otimes I \otimes T_{d}$ one obtains

$$
\mathbf{B}_{r}:=E_{r}(\mathbf{A})=\sum_{i=1}^{r} a_{i} \bigotimes_{j=1}^{d} \exp \left(-b_{i} T_{j}\right) \in \mathcal{R}_{r}
$$

Representation versus Decomposition

$P:=\left(\times{ }_{j=1}^{d} V_{j}\right)^{r}$ parameter set.

Representation of a tensor:

$$
\varphi: P \longrightarrow \mathcal{R}_{r} \subset \mathbf{V}
$$

Injectivity of φ not required, $\operatorname{rank}(\varphi(p)) \leq r$.

Let $\operatorname{rank}(\mathbf{v})=r$. Under certain conditions the representation of $\mathbf{v}=\varphi(p)$ is essentially unique. This allows the decomposition

$$
\varphi^{-1}: \mathcal{R}_{r} \longrightarrow P
$$

Operations with Tensors and Truncations

$$
\mathbf{A}=\sum_{\nu=1}^{r} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} \in \mathcal{R}_{r}, \quad \mathbf{v}=\sum_{\nu=1}^{s} \bigotimes_{j=1}^{d} v_{\nu}^{(j)} \in \mathcal{R}_{s}
$$

\Rightarrow

$$
\mathbf{w}:=\mathbf{A v}=\sum_{\nu=1}^{r} \sum_{\mu=1}^{s} \bigotimes_{j=1}^{d} A_{\nu}^{(j)} v_{\mu}^{(j)} \in \mathcal{R}_{r s}
$$

Because of the increased representation rank $r s$, one must apply a truncation $\mathbf{w} \mapsto \mathbf{w}^{\prime} \in \mathcal{R}_{r^{\prime}}$ with $r^{\prime}<r s$.

Unfortunately, truncation to lower rank is not straightforward in the r-term format.

There are also other disadvantages of the r-term format

Numerical Difficulties because of Non-Closedness

In general, \mathcal{R}_{r} is not closed. Example: a, b linearly independent and

$$
\begin{aligned}
& \mathbf{v}=a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a \in \mathcal{R}_{3} \backslash \mathcal{R}_{2} \\
& \mathbf{v}=\underbrace{(b+n a) \otimes\left(a+\frac{1}{n} b\right) \otimes a+a \otimes a \otimes(b-n a)}_{\mathbf{v}_{n} \in \mathcal{R}_{2}}-\frac{1}{n} b \otimes b \otimes a .
\end{aligned}
$$

Here, the terms of \mathbf{v}_{n} grow like $O(n)$, while the result is of size $O(1)$.
This implies numerical cancellation: $\log _{2} n$ binary digits of \mathbf{v}_{n} are lost.
We say that the sequence $\left\{\mathbf{v}_{n}\right\}$ is unstable.
Proposition: Suppose $\operatorname{dim}\left(V_{j}\right)<\infty$ and $\mathbf{v} \in \mathbf{V}=\otimes_{j=1}^{d} V_{j}$.
A stable sequence $\mathbf{v}_{n} \in \mathcal{R}_{r}$ with $\lim \mathbf{v}_{n}=\mathbf{v}$ exists if and only if $\mathbf{v} \in \mathcal{R}_{r}$.
Conclusion: If $\mathbf{v}=\lim \mathbf{v}_{n} \notin \mathcal{R}_{r}$, the sequence $\mathbf{v}_{n} \in \mathcal{R}_{r}$ is unstable.
Best approximation problem: Let $\mathbf{v}^{*} \in \mathbf{V}$. Try to find $\mathbf{v} \in \mathcal{R}_{r}$ with

$$
\left\|\mathbf{v}^{*}-\mathbf{v}\right\|=\inf \left\{\left\|\mathbf{v}^{*}-\mathbf{w}\right\|: \mathbf{w} \in \mathcal{R}_{r}\right\}
$$

This optimisation problem need not be solvable.
De Silva-Lim (2008): Tensors without a best approximation have a positive measure ($\mathbb{K}=\mathbb{R}$).

2.2 Tensor Subspace Format (Tucker Format)

2.2.1 Definition of \mathcal{T}_{r}

Implementational description: $\mathcal{T}_{\mathbf{r}}$ with $\mathbf{r}=\left(r_{1}, \ldots, r_{d}\right)$ contains all tensors of the form

$$
\mathbf{v}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} b_{i_{j}}^{(j)}
$$

with some vectors $\left\{b_{i_{j}}^{(j)}: 1 \leq i_{j} \leq r_{j}\right\} \subset V_{j}$ possibly with $r_{j} \ll n_{j}$ and $\mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \in \mathbb{R}$.
The core tensor a has $\prod_{j=1}^{d} r_{j}$ entries.
Algebraic description:

Tensor space $\mathbf{V}=V_{1} \otimes V_{2} \otimes \ldots \otimes V_{d}$. Choose subspaces $U_{j} \subset V_{j}$ and consider the tensor subspace $\mathbf{U}=\stackrel{d}{\bigotimes_{j=1}^{d}} U_{j}$. Then

$$
\mathcal{T}_{\mathbf{r}}:=\bigcup_{\operatorname{dim}\left(U_{j}\right) \leq r_{j}} \bigotimes_{j=1}^{d} U_{j} .
$$

Short Notation

$$
\mathbf{v}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} b_{i_{j}}^{(j)}
$$

Define matrices $B^{(j)}:=\left[b_{1}^{(j)} \cdots b_{r_{j}}^{(j)}\right]$ and $\mathbf{B}:=\bigotimes_{j=1}^{d} B^{(j)}$.

Then

$$
\mathbf{v}=\mathrm{Ba}
$$

2.2.2 Matricisation and Tucker Ranks

Let $\mathbf{V}=\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}} \otimes \ldots \otimes \mathbb{R}^{n_{d}}$, fix $j \in\{1, \ldots, d\}$, set $n_{[j]}:=\prod_{k \neq j} n_{k}$.
The j-th matricisation maps a tensor $\mathbf{v} \in \mathbf{V}$ into a matrix

$$
M_{j} \in \mathbb{R}^{n_{j} \times n_{[j]}}
$$

defined by

$$
M_{j}\left[i_{j}, \mathbf{i}_{[j]}\right]:=\mathbf{v}\left[i_{1}, \ldots, i_{d}\right] \quad \text { for } \mathbf{i}_{[j]}:=\left(i_{1}, \ldots, i_{j-1}, i_{j+1}, \ldots, i_{d}\right)
$$

The isomorphism $\mathcal{M}_{j}: \mathbf{V} \rightarrow \mathbb{R}^{n_{j} \times n_{[j]}}$ is called the j-th matricisation.

Tucker rank or j-th rank:

$$
r_{j}=\operatorname{rank}_{j}(\mathrm{v}):=\operatorname{rank}\left(\mathcal{M}_{j}(\mathrm{v})\right) \quad \text { for } 1 \leq j \leq d
$$

Sometimes, $\mathbf{r}:=\left(r_{1}, \ldots, r_{d}\right)$ is called the multilinear rank of \mathbf{v}.
Example: $\mathbf{v} \in \mathbf{V}:=\mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2} \otimes \mathbb{R}^{2}$. Then $\mathcal{M}_{2}(\mathrm{v})$ belongs to $\mathbb{R}^{2 \times 8}$.

$$
\mathcal{M}_{2}(\mathrm{v})=\left(\begin{array}{llllllll}
\mathbf{v}_{1111} & \mathbf{v}_{1112} & \mathbf{v}_{1121} & \mathbf{v}_{1122} & \mathbf{v}_{2111} & \mathbf{v}_{2112} & \mathbf{v}_{2121} & \mathbf{v}_{2122} \\
\mathbf{v}_{1211} & \mathbf{v}_{1212} & \mathbf{v}_{1221} & \mathbf{v}_{1222} & \mathbf{v}_{2211} & \mathbf{v}_{2212} & \mathbf{v}_{2221} & \mathbf{v}_{2222}
\end{array}\right)
$$

2.2.3 Important Properties

Alternative definition of \mathcal{T}_{r} :

$$
\mathcal{T}_{\mathbf{r}}=\left\{\mathbf{v} \in \mathbf{V}: \operatorname{rank}_{j}(\mathbf{v}) \leq r_{j} \text { for all } 1 \leq j \leq d\right\}
$$

Later we shall prove:

- Also for $\operatorname{dim} V_{j}=\infty, \operatorname{rank}_{j}(\mathrm{v})$ can be defined.
- \mathcal{T}_{r} is weakly closed.
- If \mathbf{V} is a reflexive Banach space, the best approximation problem

$$
\inf _{\mathbf{u} \in \mathcal{T}_{\mathbf{r}}}\|\mathbf{v}-\mathbf{u}\|=\left\|\mathbf{v}-\mathbf{u}_{\text {best }}\right\|
$$

has a solution $\mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathbf{r}}$.

Choice of Vectors $b_{i}^{(j)}$

Let $\mathbf{v} \in \otimes_{j=1}^{d} U_{j}$. Representation of U_{j} by

1) generating system $\left\{b_{i}^{(j)}\right\}$ with $U_{j}=\operatorname{span}_{i} b_{i}^{(j)}$,
2) basis $\left\{b_{i}^{(j)}\right\}_{i=1}^{r_{j}} \quad\left(r_{j}=\operatorname{dim} U_{j}\right)$
3) orthonormal basis (good numerical properties!)
4) special orthonormal basis: HOSVD basis

2.2.4 HOSVD: Higher Order Singular Value Decomposition

Diagonalisation:

$$
\mathbb{R}^{n_{j} \times n_{j}} \ni \mathcal{M}_{j}(\mathrm{v}) \mathcal{M}_{j}(\mathrm{v})^{\top}=\sum_{i=1}^{\mathrm{rank}_{j}(\mathrm{v})}\left(\sigma_{i}^{(j)}\right)^{2} b_{i}^{(j)}\left(b_{i}^{(j)}\right)^{\mathrm{H}}
$$

$\sigma_{i}^{(j)}: j$-th singular values; $\left\{b_{i}^{(j)}: 1 \leq i \leq \operatorname{rank}_{j}(\mathrm{v})\right\}$: HOSVD basis(orthonormal!).

Truncation: Let $\mathbf{v}=\sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \stackrel{d}{\otimes=1} b_{i j}^{(j)} \in \mathcal{T}_{\mathbf{r}}$ with HOSVD basis vectors $b_{i}^{(j)}$. For $\mathrm{s}=\left(s_{1}, \ldots, s_{d}\right) \leq \mathbf{r}$ set

$$
\mathbf{u}_{\mathrm{HOSVD}}=\sum_{i_{1}=1}^{s_{1}} \cdots \sum_{i_{d}=1}^{s_{d}} \mathbf{a}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} b_{i_{j}}^{(j)} \in \mathcal{T}_{\mathrm{s}}
$$

Quasi-optimality:

$$
\left\|\mathbf{v}-\mathbf{u}_{\mathrm{HOSVD}}\right\| \leq\left(\sum_{j=1}^{d} \sum_{i=s_{j}+1}^{r_{j}}\left(\sigma_{i}^{(j)}\right)^{2}\right)^{1 / 2} \leq d^{1 / 2}\left\|\mathbf{v}-\mathbf{u}_{\text {best }}\right\| \quad\left(\mathbf{u}_{\text {best }} \in \mathcal{T}_{\mathrm{s}}\right)
$$

Conclusion concerning the traditional formats:

1. r-term format \mathcal{R}_{r}

- advantage: low storage cost $r d n$
- disadvantage: difficult truncation, numerical instability may occur

2. tensor subspace format $\mathcal{T}_{\mathbf{r}}$

- advantage: stable and quasi-optimal truncation
- disadvantage: exponentially expensive storage for core tensor a

The next format combines the advantages.

3 Hierarchical Format

3.1 Dimension Partition Tree

Example: $\mathbf{v} \in \mathbf{V}=V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{4}$. There are subspaces such that

Optimal subspaces are $\mathbf{U}_{\alpha}:=U_{\alpha}^{\min }(\mathbf{v})$.

Dimension partition tree:
Any binary tree with root $D:=\{1, \ldots, d\}$ and leaves $\{1\},\{2\}, \ldots,\{d\}$. $\{1,2,3,4,5,6,7\}$
$\{1,2,3,4,5,6\} \quad\{7\}$
$\{1,2,3,4,5\} \quad\{6\}$

Figure 1: Balanced tree and linear tree
The hierarchical format based on the linear tree is also called the TT format.

3.2 Algorithmic Realisation

Typical situation: $\quad \mathbf{U}_{\{1,2\}} \subset U_{1} \otimes U_{2}$ (nestedness property).

Bases: $U_{1}=\operatorname{span}_{1 \leq i \leq r_{1}}\left\{b_{i}^{(1)}\right\}, U_{2}=\underset{1 \leq j \leq r_{2}}{\operatorname{span}}\left\{b_{j}^{(2)}\right\}, \mathbf{U}_{\{1,2\}}=\underset{1 \leq \ell \leq r_{\{1,2\}}}{\text { span }}\left\{\mathbf{b}_{\ell}^{(\{1,2\})}\right\}$.

$$
\mathbf{b}_{\ell}^{(\{1,2\})}=\sum_{i=1}^{r_{\{1,2\}}} c_{i j}^{(\{1,2\}, \ell)} b_{i}^{(1)} \otimes b_{j}^{(2)}
$$

Only the basis vectors $b_{\nu}^{(j)}$ of $U_{j} \subset V_{j}(1 \leq j \leq d)$ are explicitly stored, for the other nodes store the coefficient matrices

$$
C^{(\alpha, \ell)}=\left(c_{i j}^{(\alpha, \ell)}\right)_{i j} \in \mathbb{R}^{r_{\alpha_{1}} \times r_{\alpha_{2}}}
$$

The tensor is represented by $\mathbf{v}=c_{1} \mathbf{b}_{1}^{(\{1, \ldots, d\})}$.
Storage: $(d-1) r^{3}+d r n$ for $\left[C^{(\alpha, \ell)}, c_{1}, b_{\nu}^{(j)}\right]\left(r:=\max _{\alpha} \operatorname{dim} U_{\alpha} ; n:=\max _{j} \operatorname{dim}\left(V_{j}\right)\right)$

3.3 Operations - Example: scalar product

Let $\mathbf{v}, \mathbf{w} \in \mathbf{V}$ be given by the data $\left(C^{\prime(\alpha, \ell)}, c_{1}^{\prime}, b_{\nu}^{\prime(j)}\right)$ and $\left(C^{\prime \prime(\alpha, \ell)}, c_{1}^{\prime \prime}, b_{\nu}^{\prime \prime(j)}\right)$ resp.

$$
\mathbf{v}=c_{1}^{\prime} \mathbf{b}_{1}^{\prime(D)}, \mathbf{w}=c_{1}^{\prime \prime} \mathbf{b}_{1}^{\prime \prime(D)} \Rightarrow\langle\mathbf{v}, \mathbf{w}\rangle=c_{1}^{\prime} c_{1}^{\prime \prime}\left\langle\mathbf{b}_{1}^{\prime(D)}, \mathbf{b}_{1}^{\prime \prime(D)}\right\rangle
$$

Determine the scalar products $\beta_{i j}^{(\alpha)}:=\left\langle\mathbf{b}_{i}^{\prime(\alpha)}, \mathbf{b}_{j}^{\prime \prime(\alpha)}\right\rangle$ recursively by

$$
\begin{aligned}
\beta_{i j}^{(\alpha)} & =\left\langle\mathbf{b}_{i}^{\prime(\alpha)}, \mathbf{b}_{j}^{\prime \prime(\alpha)}\right\rangle=\left\langle\sum_{k, \ell} c_{k, \ell}^{\prime(\alpha, i)} b_{k}^{\prime\left(\alpha_{1}\right)} \otimes b_{\ell}^{\prime\left(\alpha_{2}\right)}, \sum_{p, q} c_{p, q}^{\prime \prime(\alpha, j)} b_{p}^{\prime \prime\left(\alpha_{1}\right)} \otimes b_{q}^{\prime \prime\left(\alpha_{2}\right)}\right\rangle \\
& =\sum_{k, \ell} \sum_{p, q} c_{k, \ell}^{\prime(\alpha, i)} c_{p, q}^{\prime \prime(\alpha, j)}\left\langle b_{k}^{\prime\left(\alpha_{1}\right)}, b_{p}^{\prime \prime\left(\alpha_{1}\right)}\right\rangle\left\langle b_{\ell}^{\prime\left(\alpha_{2}\right)}, b_{q}^{\prime \prime\left(\alpha_{2}\right)}\right\rangle \\
& =\sum_{k, \ell} \sum_{p, q} c_{k, \ell}^{\prime(\alpha, i)} c_{p, q}^{\prime \prime(\alpha, j)} \beta_{k p}^{\left(\alpha_{1}\right)} \beta_{\ell q}^{\left(\alpha_{2}\right)}
\end{aligned}
$$

(α_{1}, α_{2} : sons of $\alpha ; \beta_{k p}^{(\alpha)}$ explicitly computable for leaves $\alpha=\{j\}$).

3.4 Basis Transformation

Set $\mathbf{B}_{\alpha}=\left[\mathbf{b}_{1}^{(\alpha)} \cdots \mathbf{b}_{r_{\alpha}}^{(\alpha)}\right]$. Let $\mathbf{B}_{\alpha}^{\prime}=\left[\mathrm{b}_{1}^{(\alpha)} \cdots \mathbf{b}_{r_{\alpha}}^{\prime(\alpha)}\right]$ be another basis.

The sons of α are denoted by α_{1} and α_{2}.

The relation

$$
\mathbf{B}_{\alpha_{i}}^{\prime} T^{\left(\alpha_{i}\right)}=\mathbf{B}_{\alpha_{i}} \quad(i=1,2)
$$

corresponds to

$$
C^{\prime(\alpha, \ell)}=T^{\left(\alpha_{1}\right)} C^{(\alpha, \ell)}\left(T^{\left(\alpha_{2}\right)}\right)^{\top} \quad \text { for } 1 \leq \ell \leq r_{\alpha}
$$

Two directions:

1) Given $\mathbf{B}_{\alpha_{i}}$, the new bases $\mathbf{B}_{\alpha_{i}}^{\prime}:=\mathbf{B}_{\alpha_{i}}\left(T^{\left(\alpha_{i}\right)}\right)^{-1}$ lead to new coefficient matrices $C^{\prime(\alpha, \ell)}:=T^{\left(\alpha_{1}\right)} C^{(\alpha, \ell)}\left(T^{\left(\alpha_{2}\right)}\right)^{\top}$.
2) Given $\mathbf{B}_{\alpha_{i}}^{\prime}$ and a decomposition $C^{\prime(\alpha, \ell)}=T^{\left(\alpha_{1}\right)} \cdot C^{(\alpha, \ell)} \cdot\left(T^{\left(\alpha_{2}\right)}\right)^{\top}$, $C^{(\alpha, \ell)}$ corresponds to $\mathbf{B}_{\alpha_{i}}:=\mathbf{B}_{\alpha_{i}}^{\prime} T^{\left(\alpha_{i}\right)}$.

3.5 Orthonormalisation

REMARK Let α be a vertex with sons α_{1} and α_{2}.
The basis $\left\{\mathbf{b}_{\ell}^{(\alpha)}\right\}$ is orthonormal, if
(a) the bases $\left\{\mathbf{b}_{i}^{\left(\alpha_{1}\right)}\right\}$ and $\left\{\mathbf{b}_{j}^{\left(\alpha_{2}\right)}\right\}$ of the sons are orthonormal and
(b) the matrices $C^{(\alpha, \ell)}$ are orthonormal with respect to the Frobenius scalar product:

$$
\left\langle C^{(\alpha, \ell)}, C^{(\alpha, m)}\right\rangle_{\mathrm{F}}=\sum_{i j}\left\langle c_{i j}^{(\alpha, \ell)}, c_{i j}^{(\alpha, m)}\right\rangle=\delta_{\ell m}
$$

Algorithm:

(a) Orthonormalise the explicitly given bases at the leaves (e.g., by QR).
(b) As soon as $\left\{\mathbf{b}_{i}^{\left(\alpha_{1}\right)}\right\}$ and $\left\{\mathbf{b}_{j}^{\left(\alpha_{2}\right)}\right\}$ are orthonormal, orthonormalise the matrices $\left\{C^{(\alpha, \ell)}\right\}$.
The new matrices $C_{\text {new }}^{(\alpha, \ell)}$ define the new orthonormal basis $\left\{\mathbf{b}_{\ell, \text { new }}^{(\alpha)}\right\}$.

3.6 HOSVD and HOSVD Bases

We recall: The HOSVD basis $\left\{\mathbf{b}_{\ell}^{(\alpha)}\right\}$ consists of the normalised eigenvectors of $M_{\alpha} M_{\alpha}^{\top}$, where $M_{\alpha}:=\mathcal{M}_{\alpha}(\mathbf{v})$ is the α-matricisation of the tensor \mathbf{v}. Instead of $\left\{\mathbf{b}_{\ell}^{(\alpha)}\right\}$ we need the corresponding coefficient matrices $\left\{C_{\text {HOSVD }}^{(\alpha, \ell)}\right\}$.

Step 1: Orthonormalisation of the bases.
Step 2: Recursion from the root to the leaves:
2a) Start at the root: $\sigma_{1}^{(r o o t)}:=\left|c_{1}^{(r o o t)}\right|$ where $\mathbf{v}=c_{1}^{(r o o t)} \mathbf{b}_{1}^{(r o o t)}$.
2b) Set

$$
E_{\alpha_{1}}:=\sum_{i=1}^{r_{\alpha}}\left(\sigma_{i}^{(\alpha)}\right)^{2} C^{(\alpha, i)}\left(C^{(\alpha, i)}\right)^{\mathrm{H}}, \quad E_{\alpha_{2}}:=\sum_{i=1}^{r_{\alpha}}\left(\sigma_{i}^{(\alpha)}\right)^{2}\left(\left(C^{(\alpha, i)}\right)^{\mathrm{H}} C^{(\alpha, i)}\right)^{\top}
$$

Diagonalisation yields

$$
E_{\alpha_{1}}=U \Sigma_{\alpha_{1}}^{2} U^{\mathrm{H}}, \quad E_{\alpha_{2}}=V \Sigma_{\alpha_{2}}^{2} V^{\mathrm{H}} \quad \text { with } \quad \Sigma_{\alpha_{i}}=\operatorname{diag}\left\{\sigma_{\nu}^{\left(\alpha_{i}\right)}\right\}
$$

$\mathbf{B}_{\alpha_{1}}^{\mathrm{HOSVD}}:=\mathbf{B}_{\alpha_{1}} U$ and $\mathbf{B}_{\alpha_{2}}^{\mathrm{HOSVD}}=\mathbf{B}_{\alpha_{2}} V$ are the desired HOSVD bases.
Arithmetical cost: $\quad O\left(d r^{4}+d n r^{2}\right)$.

3.7 HOSVD Truncation

Represent the tensor \mathbf{v} with respect to the HOSVD bases $\left\{b_{\ell}^{(\alpha)}: 1 \leq \ell \leq r_{\alpha}\right\}$.

Choose smaller dimensions

$$
s_{\alpha} \leq r_{\alpha}
$$

Omit all terms corresponding to $\left\{b_{\ell}^{(\alpha)}: s_{\alpha}<\ell \leq r_{\alpha}\right\}$. Result: $\mathbf{v}_{\text {HOSVD. }}$.
Then the following estimates hold:

$$
\left\|\mathbf{v}-\mathbf{v}_{\mathrm{HOSVD}}\right\| \leq\left(\sum_{\alpha} \sum_{\nu \geq s_{\alpha}+1}\left(\sigma_{\nu}^{(\alpha)}\right)^{2}\right)^{1 / 2} \leq(2 d-3)^{1 / 2}\left\|\mathbf{v}-\mathbf{v}_{\text {best }}\right\|
$$

4 Solution of Linear Systems

Linear system

$$
A x=b
$$

where $\mathbf{x}, \mathbf{b} \in \mathbf{V}=\otimes_{j=1}^{d} V_{j}$ and $\mathbf{A} \in \otimes_{j=1}^{d} \mathcal{L}\left(V_{j}, V_{j}\right) \subset \mathcal{L}(\mathbf{V}, \mathbf{V})$ are represented in one of the formats (e.g., A: r-term format, \mathbf{x}, \mathbf{b} : hierarchical format):

Standard linear iteration:

$$
\mathbf{x}^{m+1}=\mathbf{x}^{m}-\mathbf{B}\left(\mathbf{A} \mathbf{x}^{m}-\mathbf{b}\right)
$$

\Rightarrow representation ranks blow up.

Therefore truncations T are used ('truncated iteration'):

$$
\mathbf{x}^{m+1}=T\left(\mathbf{x}^{m}-\mathbf{B}\left(T\left(\mathbf{A} \mathbf{x}^{m}-\mathbf{b}\right)\right)\right) .
$$

Cost per step: $n d \times$ powers of the involved representation ranks.

$$
\mathbf{x}^{m+1}=T\left(\mathbf{x}^{m}-\mathbf{B}\left(T\left(\mathbf{A} \mathbf{x}^{m}-\mathbf{b}\right)\right)\right)
$$

Choice of B:
If \mathbf{A} corresponds to an elliptic pde of order 2 , the discretisation of Δ is spectrally equivalent $\Rightarrow \mathbf{B}=\mathbf{B}_{r}$ from above has a simple r-term format.

Obvious variants: cg-like methods

Literature:

Khoromskij 2009, Kressner-Tobler 2010, Kressner-Tobler 2011 (SIAM), Kressner-Tobler 2011 (CMAM), Osedelets-Tyrtyshnikov-Zamarashkin 2011, Ballani-Grasedyck 2013, Savas-Eldén 2013

Remark: For $d=2$, these linear systems may be written as matrix equations:

$$
(A \otimes I+I \otimes A) \mathbf{x}=\mathbf{b} \quad \Leftrightarrow \quad A X+X A=B \quad \text { (Lyapunov) }
$$

(cf. Benner-Breiten 2013).

5 Variational Approach

Define

$$
\Phi(\mathbf{x}):=\langle\mathbf{A} \mathbf{x}, \mathbf{x}\rangle-2\langle\mathbf{b}, \mathbf{x}\rangle
$$

if \mathbf{A} is positive definite or

$$
\Phi(\mathrm{x}):=\|\mathrm{A} \mathrm{x}-\mathrm{b}\|^{2}
$$

or

$$
\Phi(\mathrm{x}):=\|\mathrm{B}(\mathrm{Ax}-\mathrm{b})\|^{2}
$$

and try to minimise $\Phi(\mathrm{x})$ over all parameters of x is a fixed format.

Literature:
Espig-Hackbusch-Rohwedder-Schneider, Falcó-Nouy, Holtz-Rohwedder-Schneider, Mohlenkamp, Osedelets,...

5.1 Formulation of the Problem, ALS Method

Let

$$
\Phi(\mathbf{u})=\min
$$

be a minimisation problem over the whole tensor space $\mathbf{u} \in \mathbf{V}$.

Approximation: Choose any format $\mathcal{F} \subset \mathbf{V}$. Solve

$$
\Phi(\mathbf{u})=\min \text { over all } \mathbf{v} \in \mathcal{F} .
$$

This is the minimisation over all parameters in the representation of $\mathbf{v} \in \mathcal{F}$.

Difficulty: While the original problem may be convex, the new problem is not.

Example: $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ over all $\mathbf{u} \in \mathcal{R}_{1}=\mathcal{T}_{(1, \ldots, 1)} . \mathbf{v} \in \mathbf{V}$ is arbitrary.

Ansatz:

$$
\mathbf{u}=u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}, \quad u^{(j)} \in V_{j}=\mathbb{R}^{n_{j}}
$$

Necessary condition: $\nabla \Phi(\mathbf{u})=0$ (multilinear system of equations).

ALS $=$ alternating least-squares method:

1) solve $\nabla \Phi\left(u^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}\right)=0$ w.r.t. $u^{(1)} \Rightarrow$ solution: $\hat{u}^{(1)}$,
2) solve $\nabla \Phi\left(\hat{u}^{(1)} \otimes u^{(2)} \otimes \ldots \otimes u^{(d)}\right)=0$ w.r.t. $u^{(2)} \Rightarrow$ solution: $\hat{u}^{(2)}$, :
d) solve $\nabla \Phi\left(\hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d-1)} \otimes u^{(d)}\right)=0$ w.r.t. $u^{(d)} \Rightarrow$ solution: $\hat{u}^{(d)}$ All partial steps are linear problems and easy to solve.

One ALS iteration is given by $\mathbf{u}_{0}=u^{(1)} \otimes \ldots \otimes u^{(d)} \mapsto \mathbf{u}_{1}=\hat{u}^{(1)} \otimes \ldots \otimes \hat{u}^{(d)}$. This defines a ALS sequence $\left\{\mathbf{u}_{m}: m \in \mathbb{N}_{0}\right\}$.

Questions: Does u_{m} converge? To what limit? Convergence speed?

5.2 First Results

Mohlenkamp (2013, Linear Algebra Appl. 438):

- The sequence $\left\{\mathbf{u}_{m}: m \in \mathbb{N}_{0}\right\}$ is bounded,
- $\left\|\mathbf{u}_{m}-\mathbf{u}_{m+1}\right\| \rightarrow 0$,
- $\sum_{m=0}^{\infty}\left\|\mathbf{u}_{m}-\mathbf{u}_{m+1}\right\|^{2}<\infty$,
- the set S of accumulation points of $\left\{\mathbf{u}_{m}\right\}$ is connected and compact.

Conclusion: If S contains an isolated point \mathbf{u}^{*}, it follows that $\mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$.

Note that, in general, the limit may depend on the starting value!

5.3 Study of Examples

5.3.1 Case of $d=2$

$\mathbf{v}:=\binom{1}{0} \otimes\binom{1}{0}+2\binom{0}{1} \otimes\binom{0}{1}, \quad \Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$.

1) $\mathbf{u}^{* *}=2\binom{0}{1} \otimes\binom{0}{1}$ is the global minimiser and an attractive fixed point.
2) $\mathbf{u}^{*}=\binom{1}{0} \otimes\binom{1}{0}$ is a fixed point of the ALS iteration:

$$
\Phi\left(\mathbf{u}^{*}+\delta_{1} \otimes\binom{1}{0}\right)=\Phi\left(\mathbf{u}^{*}\right)+\left\|\delta_{1}\right\|^{2}
$$

But $\Phi\left(\binom{1}{t} \otimes\binom{1}{t}\right)=\Phi\left(\mathbf{u}^{*}\right)-t^{2}\left(2-t^{2}\right)$
$\Rightarrow \mathbf{u}^{*}$ is a saddle point and a repulsive fixed point.

Conclusion: Almost all starting values lead to $\mathbf{u}_{m} \rightarrow \mathbf{u}^{* *}$.

5.3.2 Case of $d \geq 3$

For $a \perp b$ with $\|a\|=\|b\|=1$ consider $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ with

$$
\mathbf{v}=\otimes^{3} a+2 \otimes^{3} b
$$

Again $\mathbf{u}^{*}=\otimes^{3} a$ and $\mathbf{u}^{* *}=2 \otimes^{3} b$ are fixed points, $\Phi\left(\mathbf{u}^{* *}\right)<\Phi\left(\mathbf{u}^{*}\right)$.
But now both are local minima (attractive fixed points)!
Additional saddle point (repulsive fixed point): $\mathbf{u}^{* * *}=c \otimes^{3}\left(a+\frac{1}{2} b\right)$.
The sequence $\left\{\mathbf{u}_{m}\right\}$ corresponding to the starting value

$$
\mathbf{u}_{0}=c^{(0)}\left(a+t_{1}^{(0)} b\right) \otimes\left(a+t_{2}^{(0)} b\right) \otimes\left(a+t_{3}^{(0)} b\right)
$$

is completely defined by $t_{2}^{(0)}$ and $t_{3}^{(0)}$. The characteristic value is

$$
\tau_{m}:=\left|t_{2}^{(m)}\right|^{\alpha}\left|t_{3}^{(m)}\right|^{\beta} \quad \text { with } \quad \alpha=5^{1 / 2}-1, \beta=2
$$

(A) $\tau_{0}>2^{-\gamma}, \gamma=5^{1 / 2}+1 \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{* *}$ (global minimiser),
(B) $\tau_{0}<2^{-\gamma} \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$ (local minimiser),
(C) $\tau_{0}=2^{-\gamma} \Rightarrow \mathbf{u}_{m} \rightarrow \mathbf{u}^{* * *}$ (saddle point, global minimiser on the manifold $\tau=2^{-\gamma}$.

We recall:

Conclusion: If the set of accumulation points of $\left\{\mathbf{u}_{m}\right\}$ contains an isolated point \mathbf{u}^{*}, it follows that $\mathbf{u}_{m} \rightarrow \mathbf{u}^{*}$.

Wang-Chu (2014): Global convergence for almost all \mathbf{u}_{0}.

Uschmajew (2015):

Analysis based on the Łojasiewicz inequality yields:
All sequences \mathbf{u}_{m} converge to some \mathbf{u}^{*} with $\nabla \Phi\left(\mathbf{u}^{*}\right)=0$.

Łojasiewicz (1965, Ensembles semi-analytiques): If Φ is analytic,

$$
\exists \theta \in(0,1 / 2] \quad\left|\Phi(x)-\Phi\left(x_{*}\right)\right|^{1-\theta} \leq\|\nabla \Phi(x)\|
$$

in some neighbourhood of x_{*}.

Convergence speed?

The proof by the Łojasiewicz inequality is not constructive.
Espig-Khachatryan (2015): Study of sequences for $\Phi(\mathbf{u})=\|\mathbf{v}-\mathbf{u}\|^{2}$ with

$$
\begin{aligned}
\mathbf{v}= & \otimes^{3} a+\lambda(a \otimes a \otimes b+a \otimes b \otimes a+b \otimes a \otimes a) \\
& a \perp b, \quad\|a\|=\|b\|=1
\end{aligned}
$$

Depending on the value of λ it is shown that the convergence can be

- sublinear $(\lambda=1 / 2)$,
- linear $(\lambda<1 / 2)$.

For $\mathbf{v}=\otimes^{3} a+2 \otimes^{3} b, \mathbf{u}_{m} \rightarrow \otimes^{3} a$ or $2 \otimes^{3} b$, we have

- superlinear convergence (of order $2+5^{1 / 2}>1$)

Study of the general case: Gong-Mohlenkamp-Young 2017

6 Multivariate Cross Approximation

Matrix Case

Problem: given $M \in \mathbb{K}^{I \times J}$, find a rank- r matrix R_{r} close to M evaluating only $O(r(\# I+\# J))$ entries.

Choose r rows (index subset $\tau:=\left\{i_{1}, \ldots, i_{r}\right\} \subset I$) and r columns (index subset $\left.\sigma:=\left\{j_{1}, \ldots, j_{r}\right\} \subset J\right)$.

$$
M=\left[\begin{array}{llllllllll}
* & & & * & & * & & & \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
* & * & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & & \\
& * & & & * & & * & & &
\end{array}\right]
$$

Then, a matrix R_{r} of rank r with

$$
R[i, j]=M[i, j] \quad \text { for all index pairs with either } i \in \tau \text { or } j \in \sigma
$$

is given by

$$
R_{r}=\left.\left.M\right|_{I \times \sigma} \cdot\left(\left.M\right|_{\tau \times \sigma}\right)^{-1} \cdot M\right|_{\tau \times J}
$$

provided that the $r \times r$ matrix $\left.M\right|_{\tau \times \sigma}$ is regular.

$$
M=\left[\begin{array}{lllllllll}
* & & & * & & * & & & \\
& * & & & * & & * & & \\
& * & * & * & * & * & * & * & * \\
& * & & & * & & * & & \\
& * & & & * & & * & & \\
& * & * & * & * & * & * & * & * \\
& * & & & * & & * & & \\
* & * & * & * & * & * & * & * & * \\
& * & & & * & & * & & \\
& * & & & * & & * & & \\
& &
\end{array}\right]
$$

If $\operatorname{rank}(M)=r$, there exist subsets τ, σ such that $\left.M\right|_{\tau \times \sigma}$ is regular and $R_{r}=M$.

Adaptive Cross Approximation (ACA): adaptive choice of τ, σ.

Generalisation to order $d \geq 3$

- hierarchical format
- Apply the previous idea to all matricisations

$$
M:=\mathcal{M}_{\alpha}(\mathbf{v})
$$

- M is large, but the matrix $\left(\left.M\right|_{\tau \times \sigma}\right)^{-1}$ is still of size $r \times r$.

Then:

Required number of evaluations of the tensor is $\left.O\left(\sum_{j} \# I_{j}\right)\right)$.

If \mathbf{v} has hierarchical rank $\mathfrak{r}:=\left(\operatorname{rank}_{\alpha}(\mathbf{v})\right)_{\alpha \in T_{D}}$, it can be reconstructed in $\mathcal{H}_{\mathfrak{r}}$ exactly.

Suited for applications to multivariate functions.

EXAMPLE: Approximation of a special multilinear function

Boundary-element application. Solution of $-\Delta u=0$ in $\Omega \subset \mathbb{R}^{3}$ with boundary Г. Ansatz functions: piecewise constant functions for a triangulation \mathcal{T}.

Galerkin matrix:

$$
M_{\Delta^{\prime} \Delta^{\prime \prime}}=\iint_{\Delta^{\prime}} \iint_{\Delta^{\prime \prime}} \frac{\mathrm{d} \Gamma_{\mathrm{x}} \mathrm{~d} \Gamma_{\mathrm{y}}}{\|\mathrm{x}-\mathrm{y}\|} \quad\left(\Delta^{\prime}, \Delta^{\prime \prime} \in \mathcal{T}\right)
$$

Difficult cases: $\Delta^{\prime} \cap \Delta^{\prime \prime} \neq \emptyset$.

Case of one common side.
W.I.o.g. the corners of Δ^{\prime} are $(0,0,0),(1,0,0),(x, y, 0)$, while those of $\Delta^{\prime \prime}$ are $(0,0,0),(1,0,0),(\xi, \eta, \tau)$.
$\Rightarrow M_{\Delta^{\prime} \Delta^{\prime \prime}}=f(x, y, \xi, \eta, \tau)$.

Tensor approximation faster than quadrature by a factor of 630 to 2800 (cf. Ballani 2012).

7 PDEs with stochastic coefficients

Literature: Espig-Hackbusch-Litvinenko-Matthies-Wähnert: Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Comput. Math. Appl. 67 (2014) 818-829

7.1 Formulation of the problem

Boundary value problem in $D \subset \mathbb{R}^{d}(1 \leq d \leq 3)$:

$$
\begin{aligned}
\operatorname{div} \kappa(x, \omega) \operatorname{grad} u & =f \text { for } x \in D, \omega \in \Omega, \\
u & =0 \text { on } \partial D .
\end{aligned}
$$

Assumption (log-normal distribution):

$$
\kappa(x, \omega)=\exp (\gamma(x, \omega)), \quad \gamma \text { Gaussian random field. }
$$

Solution $u=u(x, \omega) \in L^{2}\left(\Omega, H_{0}^{1}(D)\right)$.
Weak formulation: $a(u, v)=f(v)$ for all $v \in L^{2}\left(\Omega, H_{0}^{1}(D)\right)$.

Stochastic quantities:

Mean functions:

$$
\begin{aligned}
& m_{\kappa}(x):=\mathbb{E}(\kappa(x, \cdot)), \\
& m_{\gamma}(x):=\mathbb{E}(\gamma(x, \cdot)),
\end{aligned}
$$

covariance functions:

$$
\begin{aligned}
\Gamma_{\kappa}(x, y) & :=\mathbb{E}\left[\left(\kappa(x, \cdot)-m_{\kappa}(x)\right)\left(\kappa(y, \cdot)-m_{\kappa}(y)\right)\right], \\
\Gamma_{\gamma}(x, y) & :=\mathbb{E}\left[\left(\gamma(x, \cdot)-m_{\gamma}(x)\right)\left(\gamma(y, \cdot)-m_{\gamma}(y)\right)\right] .
\end{aligned}
$$

Interconnection:

$$
\begin{aligned}
m_{\gamma}(x) & =2 \log m_{\kappa}(x)-\frac{1}{2} \log \left(\Gamma_{\kappa}(x, x)+m_{\kappa}(x)^{2}\right) \\
\Gamma_{\gamma}(x, y) & =\log \left(1+\frac{\Gamma_{\kappa}(x, y)}{m_{\kappa}(x) m_{\kappa}(y)}\right)
\end{aligned}
$$

Singular value decompositions (sums restricted to positive singular values):

$$
\begin{aligned}
& \tilde{\kappa}(x, \omega):=\kappa(x, \omega)-m_{\kappa}(x)=\sum_{k}\left(\lambda_{k}\right)^{1 / 2} \kappa_{k}(x) \Phi_{k}(\omega), \\
& \tilde{\gamma}(x, \omega):=\gamma(x, \omega)-m_{\gamma}(x)=\sum_{k}\left(\lambda_{k}^{\prime}\right)^{1 / 2} \gamma_{k}(x) \theta_{k}(\omega) .
\end{aligned}
$$

The $L^{2}(D)$ orthonormal system $\left\{\kappa_{k}\right\}$ are the eigenfunctions of the HilbertSchmidt operator

$$
\begin{aligned}
C_{\kappa} & \in \mathcal{L}\left(L^{2}(D), L^{2}(D)\right), \quad\left(C_{\kappa} \varphi\right)(x)=\int_{D} \Gamma_{\kappa}(x, y) \varphi(y) \mathrm{d} y \\
C_{\kappa} \kappa_{k} & =\lambda_{k} \kappa_{k}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
C_{\gamma} & \in \mathcal{L}\left(L^{2}(D), L^{2}(D)\right), \quad\left(C_{\gamma} \varphi\right)(x)=\int_{D} \Gamma_{\gamma}(x, y) \varphi(y) \mathrm{d} y \\
C_{\gamma} \gamma_{k} & =\lambda_{k}^{\prime} \gamma_{k}
\end{aligned}
$$

Furthermore,

$$
\theta_{k}(\omega)=\left(\lambda_{k}^{\prime}\right)^{-1 / 2} \int_{D}\left[\gamma(x, \omega)-m_{\gamma}(x)\right] \gamma_{k}(x) \mathrm{d} x
$$

are jointly normal distributed and orthonormal random variables in $L^{2}(\Omega)$.

Uniform ellipticity:

In the following, we assume that

$$
\sum_{k}\left(\lambda_{k}^{\prime}\right)^{1 / 2}\left\|\gamma_{k}\right\|_{\infty}<\infty
$$

Then one can show that

$$
0<\underline{\kappa} \leq \kappa(x, \omega)
$$

holds almost surely and for almost all $x \in D$.

Consequence: Sufficiently small perturbations of $\kappa(x, \omega)$ do not change the ellipticity of the problem.

Multivariate Hermite polynomials $L^{2}(\Omega)$:

$$
\begin{aligned}
H_{\iota}(\mathbf{x}) & :=\prod_{k=1}^{\infty} h_{\iota_{k}}\left(x_{k}\right) \quad \text { for } \iota \in \ell_{0}(\mathbb{N}) \\
h_{i} & : i \text {-th Hermite polynomial, } \\
\ell_{0}(\mathbb{N}) & :=\left\{\iota=\left(\iota_{k}\right)_{k \in \mathbb{N}}: \iota_{k} \in \mathbb{N}_{0}, \iota_{k}=0 \text { for almost all } k \in \mathbb{N}\right\} ;
\end{aligned}
$$

Set

$$
\boldsymbol{\theta}=\left(\theta_{k}\right)_{k \in \mathbb{N}} \text { orthonormal system in } L^{2}(\Omega)
$$

Then $\left\{(\iota!)^{-1 / 2} H_{\iota}(\theta): \iota \in \ell_{0}(\mathbb{N})\right\}$ is an orthonormal basis in $L^{2}(\Omega)$ and

$$
\mathbb{E}\left(\kappa(x, \cdot)(\iota!)^{-1 / 2} H_{\iota}(\theta)\right)=m_{\kappa}(x) \prod_{k}\left(\left(\lambda_{k}^{\prime}\right)^{1 / 2} \gamma_{k}(x)\right)^{\iota_{k}}\left(\iota_{k}!\right)^{-1 / 2}
$$

(cf. Janson: Gaussian Hilbert Spaces, 1997; Ullmann: PhD thesis 2008).

The expansion of

$$
\tilde{\kappa}=\kappa-m_{\kappa}=\sum_{\iota \in \ell_{0}(\mathbb{N})} \sum_{\ell \in \mathbb{N}} \xi_{\ell}^{(\iota)}(\iota!)^{-1 / 2} \kappa_{\ell} \otimes H_{\iota}(\theta) \in L^{2}(D \times \Omega)
$$

into the orthonormal basis

$$
\left\{(\iota!)^{-1 / 2} \kappa_{\ell} \otimes H_{\iota}(\theta): \iota \in \ell_{0}(\mathbb{N}), \ell \in \mathbb{N}\right\}
$$

has the coefficients

$$
\begin{aligned}
\xi_{\ell, \iota}= & (\iota!)^{-1 / 2} \int_{D} \kappa_{\ell}(x) \mathbb{E}\left[\kappa(x, \cdot) H_{\iota}(\theta)\right] \mathrm{d} x \\
= & \int_{D} \kappa_{\ell}(x) m_{\kappa}(x) \prod_{k}\left(\left(\lambda_{k}^{\prime}\right)^{1 / 2} \gamma_{k}(x)\right)^{\iota_{k}}\left(\iota_{k}!\right)^{-1 / 2} \mathrm{~d} x \\
& -\delta_{0 \iota} \int_{D} \kappa_{\ell}(x) m_{\kappa}(x) \mathrm{d} x
\end{aligned}
$$

($\delta_{0 \iota}$: Kronecker delta).

7.2 Discretisation

Spatial discretisation: subspace $V_{N} \subset H_{0}^{1}(D)$ spanned by

$$
\left\{\varphi_{1}, \ldots, \varphi_{N}\right\}
$$

Stochastic discretisation: subspace $S_{J} \subset L^{2}(\Omega)$ spanned by

$$
\left\{H_{\iota}(\theta): \iota \in J\right\} \quad \text { with } \quad \# J<\infty, \quad p_{k}=\max \left\{\iota_{k}: \iota \in J\right\} .
$$

Galerkin discretisation:

$$
\begin{aligned}
& a\left(\varphi_{i} \otimes H_{\boldsymbol{\alpha}}(\boldsymbol{\theta}), \varphi_{j} \otimes H_{\boldsymbol{\beta}}(\boldsymbol{\theta})\right) \\
= & \delta_{\boldsymbol{\alpha} \boldsymbol{\beta}} \int_{D} m_{\kappa}(x)\left\langle\nabla \varphi_{i}(x), \nabla \varphi_{j}(x)\right\rangle \mathrm{d} x \\
& +\sum_{\ell=1}^{\infty} \xi_{\ell}^{(\iota)} \cdot \mathbb{E}\left(H_{\iota}(\boldsymbol{\theta}) H_{\boldsymbol{\alpha}}(\boldsymbol{\theta}) H_{\boldsymbol{\beta}}(\boldsymbol{\theta})\right) \cdot \int_{D} \kappa_{\ell}(x)\left\langle\nabla \varphi_{i}(x), \nabla \varphi_{j}(x)\right\rangle \mathrm{d} x
\end{aligned}
$$

Stochastic Galerkin matrix:

$$
\begin{aligned}
\mathbf{K} & :=\left(a\left(\varphi_{i} \otimes H_{\boldsymbol{\alpha}}, \varphi_{j} \otimes H_{\boldsymbol{\beta}}\right)\right)_{(i, \boldsymbol{\alpha}),(j, \boldsymbol{\beta})} \\
& =K_{0} \otimes \Delta_{\mathbf{0}}+\sum_{\ell} \sum_{\iota \in J} \xi_{\ell}^{(\iota)} K_{\ell} \otimes \bigotimes_{k=1}^{K} \Delta_{\iota_{k}} \quad \in \quad \mathbb{R}^{N \times N} \otimes \bigotimes_{k=1}^{K} \mathbb{R}^{\left(p_{k}+1\right) \times\left(p_{k}+1\right)}
\end{aligned}
$$

with

$$
\begin{aligned}
K & :=\max \left\{k: \iota_{k}>0 \text { for some } \iota \in J\right\}, \\
\left(\Delta_{\iota_{k}}\right)_{\alpha \beta} & :=\mathbb{E}\left(H_{\iota_{k}}\left(\theta_{k}\right) H_{\alpha}\left(\theta_{k}\right) H_{\beta}\left(\theta_{k}\right)\right), \quad \Delta_{\iota_{k}} \in \mathbb{R}^{\left(p_{k}+1\right) \times\left(p_{k}+1\right)}, \\
\left(K_{\ell}\right)_{i j} & :=\int_{D} \kappa_{\ell}(x)\left\langle\nabla \varphi_{i}(x), \nabla \varphi_{j}(x)\right\rangle \mathrm{d} x, \quad K_{\ell} \in \mathbb{R}^{N \times N}, \\
\left(K_{0}\right)_{i j} & :=\int_{D} m_{\kappa}(x)\left\langle\nabla \varphi_{i}(x), \nabla \varphi_{j}(x)\right\rangle \mathrm{d} x, \quad K_{0} \in \mathbb{R}^{N \times N} .
\end{aligned}
$$

The size of the stochastic Galerkin matrix is

$$
\left(N \cdot \prod_{k=1}^{K}\left(p_{k}+1\right)\right) \times\left(N \cdot \prod_{k=1}^{K}\left(p_{k}+1\right)\right)
$$

Truncation of $\ell \in \mathbb{N}$ in

$$
\mathbf{K}=K_{0} \otimes \Delta_{0}+\sum_{\ell \in \mathbb{N}} \sum_{\boldsymbol{\iota} \in J} \xi_{\ell}^{(\iota)} K_{\ell} \otimes \bigotimes_{k=1}^{K} \Delta_{\iota_{k}}
$$

to $\ell \in\{1, \ldots, M\}$ yields a finite expression

$$
\mathbf{K} \approx \mathbf{L}:=K_{0} \otimes \boldsymbol{\Delta}_{0}+\sum_{\ell=1}^{M} \sum_{\iota \in J} \xi_{\ell}^{(\iota)} K_{\ell} \otimes \bigotimes_{k=1}^{K} \Delta_{\iota_{k}}
$$

The approximation error is proportional to $\sum_{\ell=M+1}^{\infty} \lambda_{\ell} \rightarrow 0$.
Question: What is a suitable representation of the huge matrix \mathbf{L} or its approximation?

Later numerical example:
$N=1000, p=10, K=20 \Rightarrow N \cdot(p+1)^{20} \approx 6.7 \times 10^{23}$.

7.3 Tensor rank of the stochastic Galerkin matrix

$1+M \cdot \# J$ terms are involved in

$$
\mathbf{L}:=K_{0} \otimes \boldsymbol{\Delta}_{0}+\sum_{\ell=1}^{M} \sum_{\iota \in J} \xi_{\ell, \iota} K_{\ell} \otimes \bigotimes_{k=1}^{K} \Delta_{\iota_{k}} .
$$

Assume that we can approximate the tensor

$$
\boldsymbol{\xi} \in \mathbb{R}^{M} \otimes \bigotimes_{k=1}^{K} \mathbb{R}^{p_{k}+1}
$$

by $\boldsymbol{\eta}$ in R-term format: $\boldsymbol{\eta}=\sum_{j=1}^{R}\left[y_{j}^{(0)} \otimes \otimes_{k=1}^{K} y_{j}^{(k)}\right]$; i.e.,

$$
\eta_{\ell, \iota}=\sum_{j=1}^{R}\left[\left(y_{j}^{(0)}\right)_{\ell} \cdot \prod_{k=1}^{K}\left(y_{j}^{(k)}\right)_{\iota_{k}}\right] \quad \text { with } y_{j}^{(0)} \in \mathbb{R}^{M} \text { and } y_{j}^{(k)} \in \mathbb{R}^{p_{k}+1}
$$

Then

$$
\hat{\mathbf{L}}=K_{0} \otimes \Delta_{0}+\sum_{j=1}^{R}\left(\sum_{\ell=1}^{M}\left(y_{j}^{(0)}\right)_{\ell} K_{\ell}\right) \otimes \bigotimes_{k=1}^{K}\left(\sum_{\iota_{k}}\left(y_{j}^{(k)}\right)_{\iota_{k}} \Delta_{\iota_{k}}\right),
$$

i.e., $\hat{\mathbf{L}}$ has an $(1+R)$-term representation: $\hat{\mathbf{L}} \in \mathcal{R}_{1+R}$.
\Rightarrow also the other ranks (Tucker, hierarchical format, TT) are $\leq 1+R$.

Interludio:

$V_{j}=\mathbb{K}^{I_{j}}, \quad \mathbf{V}=\bigotimes_{j} V_{j}$.
For each $i_{j} \in I_{j}$ is associated to a function $f_{i j}^{(j)}$.
The tensor $\mathbf{v} \in \mathbf{V}$ is defined by

$$
\mathbf{v}\left[i_{1}, \ldots, i_{d}\right]=\int_{D} \prod_{j=1}^{d} f_{i_{j}}^{(j)}(x) \mathrm{d} x
$$

Then quadrature yields

$$
\mathbf{v}\left[i_{1}, \ldots, i_{d}\right] \approx \tilde{\mathbf{v}}\left[i_{1}, \ldots, i_{d}\right]:=\sum_{\ell=1}^{R} \omega_{\ell} \prod_{j=1}^{d} f_{i_{j}}^{(j)}\left(x_{\ell}\right)
$$

Set $v_{\ell}^{(j)}:=\left(f_{i}^{(j)}\left(x_{\ell}\right)\right)_{i \in I_{j}} \in V_{j}$. Then $\tilde{\mathbf{v}}\left[i_{1}, \ldots, i_{d}\right]=\sum_{\ell=1}^{R} \omega_{\ell} \prod_{j=1}^{d} v_{\ell}^{(j)}\left[i_{j}\right]$, i.e.,

$$
\tilde{\mathbf{v}}=\sum_{\ell=1}^{R} \omega_{\ell} \bigotimes_{j=1}^{d} v_{\ell}^{(j)} \in \mathcal{R}_{R}
$$

Explicit description of $\boldsymbol{\xi}$:
$\xi_{\ell, \iota}:=\int_{D} \kappa_{\ell}(x) m_{\kappa}(x) \prod_{k=1}^{K}\left\{\left[\left(\lambda_{k}^{\prime}\right)^{\frac{1}{2}} \gamma_{k}(x)\right]^{\iota_{k}}\left(\iota_{k}!\right)^{-\frac{1}{2}}\right\} \mathrm{d} x-\delta_{0, \iota} \int_{D} \kappa_{\ell}(x) m_{\kappa}(x) \mathrm{d} x$.
Apply a quadrature to $\int_{D} \cdots \mathrm{~d} x: \quad \xi_{\ell, \iota} \approx \eta_{\ell, \iota}:=$

$$
\sum_{j=1}^{R} \omega_{j} \kappa_{\ell}\left(x_{j}\right) m_{\kappa}\left(x_{j}\right) \prod_{k=1}^{K}\left\{\left[\left(\lambda_{k}^{\prime}\right)^{1 / 2} \gamma_{k}\left(x_{j}\right)\right]^{\iota_{k}}\left(\iota_{k}!\right)^{-1 / 2}\right\}-\delta_{0, \iota} \sum_{j^{\prime}=1}^{R} \omega_{j^{\prime}} \kappa_{\ell}\left(x_{j^{\prime}}\right) m_{\kappa}\left(x_{j^{\prime}}\right)
$$

This yields the desired $(R+1)$-term representation of $\boldsymbol{\eta}$:

$$
\begin{aligned}
\left(y_{j}^{(0)}\right)_{\ell} & :=\omega_{j} \kappa_{\ell}\left(x_{j}\right) m_{\kappa}\left(x_{j}\right) \\
\left(y_{j}^{(k)}\right)_{\iota_{k}} & :=\left[\left(\lambda_{k}^{\prime}\right)^{1 / 2} \gamma_{k}\left(x_{j}\right)\right]^{\iota_{k}}\left(\iota_{k}!\right)^{-1 / 2} \quad(1 \leq k \leq K)
\end{aligned}
$$

for $1 \leq j \leq R$.

The additional term for $j=0$ is

$$
\left(y_{0}^{(0)}\right)_{\ell}:=-\sum_{j^{\prime}=1}^{R} \omega_{j^{\prime}} \kappa_{\ell}\left(x_{j^{\prime}}\right) m_{\kappa}\left(x_{j^{\prime}}\right), \quad\left(y_{0}^{(k)}\right)_{\iota_{k}}:=\delta_{0, \iota_{k}}
$$

The error $\|\boldsymbol{\xi}-\boldsymbol{\eta}\|_{F}$ (quadrature error) does not depend on J (i.e., on K and p_{k}).

Final problem:

$$
\hat{\mathbf{L}} \mathbf{u}=\left(\sum_{j=0}^{R} \hat{K}_{j} \otimes \hat{\Delta}_{j}\right) \mathbf{u}=\mathbf{f}
$$

Let B the approximate inverse of the discrete Laplacian. Then

$$
\sigma\left(B \hat{K}_{j}\right)=O(1)
$$

and $(B \otimes I) \hat{\mathbf{L}}$ is well-conditioned.

Numerical results with

$$
\Gamma_{\kappa}(x, y)=\exp \left(-a^{2}\|x-y\|^{2}\right), \quad \frac{1}{a} \text { covariance length, }
$$

Gaussian quadrature with S points per direction:

$$
D=(0,1)
$$

$D=(0,1)^{2}$

8 Minimal Subspaces

8.1 Definitions

We recall the definition of the algebraic tensor space:

$$
\mathbf{V}:=\operatorname{span}\left\{\bigotimes_{j=1}^{d} v^{(j)}: v^{(j)} \in V_{j}\right\}=: a \bigotimes_{j=1}^{d} V_{j}
$$

Here, $\operatorname{dim}\left(V_{j}\right)=\infty$ may hold.
Question: Given $\mathbf{v} \in \mathbf{V}$, are there minimal subspaces $U_{j}^{\min }(\mathbf{v}) \subset V_{j}$ such that

$$
\begin{aligned}
& \mathbf{v} \in \bigotimes_{j=1}^{d} U_{j}^{\min }(\mathbf{v}) \\
& \mathbf{v} \in \bigotimes_{j=1}^{d} U_{j} \Longrightarrow U_{j}^{\min }(\mathbf{v}) \subset U_{j} .
\end{aligned}
$$

Such subspaces are the optimal choice for the tensor subspace representation (Tucker).

Elementary results:

1) There are finite-dimensional U_{j} with $\mathbf{v} \in \bigotimes_{j=1}^{d} U_{j}$, more precisely

$$
\operatorname{dim}\left(U_{j}\right) \leq \operatorname{rank}(\mathbf{v})
$$

2) $\mathbf{v} \in \otimes_{j=1}^{d} U_{j}^{\prime}$ and $\mathbf{v} \in \otimes_{j=1}^{d} U_{j}^{\prime \prime}$ imply $\mathbf{v} \in \otimes_{j=1}^{d}\left(U_{j}^{\prime} \cap U_{j}^{\prime \prime}\right)$.
3) The intersection of all U_{j} with $\mathbf{v} \in \otimes_{j=1}^{d} U_{j}$ yields $U_{j}^{\mathrm{min}}(\mathbf{v})$.

Characterisation of $U_{j}^{\text {min }}(\mathbf{v})$ in the finite-dimensional case:

$$
U_{j}^{\min }(\mathrm{v})=\operatorname{range}\left(M_{j}\right), \quad \text { where } M_{j}:=\mathcal{M}_{j}(\mathrm{v}) \text { (matricisation). }
$$

The characterisation in the general case needs some notation.
V_{j}^{\prime} dual space of V_{j}. Consider $\varphi^{[j]}:=\otimes_{k \neq j} \varphi^{(k)}$ with $\varphi^{(k)} \in V_{k}^{\prime}$.
$\varphi^{[j]}$ can be regarded as a map from $\mathrm{V}=\otimes_{k=1}^{d} V_{k}$ onto V_{j} via

$$
\varphi^{[j]}\left(\bigotimes_{k=1}^{d} v^{(k)}\right)=\left(\prod_{k \neq j} \varphi^{(k)}\left(v^{(k)}\right)\right) v^{(j)}
$$

If V_{j} is a normed space, V_{j}^{*} denotes the continuous dual space $\left(V_{j}^{*} \subset V_{j}^{\prime}\right)$.

Characterisations:

$$
\begin{aligned}
& U_{j}^{\min }(\mathrm{v})=\left\{\varphi^{[j]}(\mathrm{v}): \varphi^{[j]} \in{ }_{a} \bigotimes_{k \neq j} V_{k}^{\prime}\right\}, \\
& U_{j}^{\min }(\mathrm{v})=\left\{\varphi(\mathrm{v}): \varphi \in\left({ }_{a} \bigotimes_{k \neq j} V_{k}\right)^{\prime}\right\},
\end{aligned}
$$

although $a \otimes_{k \neq j} V_{k}^{\prime}$ is strictly smaller than $\left(a \otimes_{k \neq j} V_{k}\right)^{\prime}$ in the general infinite-dimensional case.

If V_{k} and/or ${ }_{a} \bigotimes_{k \neq j} V_{k}$ are normed spaces, even

$$
\begin{aligned}
& U_{j}^{\min }(\mathrm{v})=\left\{\varphi^{[j]}(\mathrm{v}): \varphi^{[j]} \in a \bigotimes_{k \neq j} V_{k}^{*}\right\}, \\
& U_{j}^{\min }(\mathrm{v})=\left\{\varphi(\mathrm{v}): \varphi \in\left(\underset{k \neq j}{ } \bigotimes_{k} V_{k}\right)^{*}\right\}
\end{aligned}
$$

holds.

8.2 Topological Tensor Space

$\left(V_{j},\|\cdot\|_{j}\right)$ are Banach spaces. The topological tensor space $\mathbf{V}:=\|\cdot\| \otimes_{j=1}^{d} V_{j}$ is the completion of the algebraic tensor space $a \otimes_{j=1}^{d} V_{j}$ w.r.t. a norm $\|\cdot\|$.

A necessary condition for reasonable topological tensor spaces is the continuity of the tensor product, i.e.,

$$
\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\| \leq C \prod_{j=1}^{d}\left\|v^{(j)}\right\|_{j}
$$

for some $C<\infty$ and all $v^{(j)} \in V_{j}$.
DEFINITION: $\|\cdot\|$ is called a crossnorm if

$$
\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\|=\prod_{j=1}^{d}\left\|v^{(j)}\right\|_{j}
$$

REMARK: There are different crossnorms $\|\cdot\|$ for the same $\|\cdot\|_{j}$!

Reasonable Crossnorms

$\|\cdot\|_{j}^{*}$: dual norm corresponding to $\|\cdot\|_{j}$, i.e. $\|\varphi\|_{j}^{*}=\max \left\{|\varphi(v)| /\|v\|_{j}: 0 \neq\right.$ $\left.v \in V_{j}\right\}$.

DEFINITION: $\|\cdot\|$ is called a reasonable crossnorm if

$$
\begin{aligned}
\left\|\bigotimes_{j=1}^{d} v^{(j)}\right\|^{\prime} & =\prod_{j=1}^{d}\left\|v^{(j)}\right\|_{j} \quad \text { for } v^{(j)} \in V_{j} \quad \text { and } \\
\left\|\bigotimes_{j=1}^{d} \varphi^{(j)}\right\|^{*} & =\prod_{j=1}^{d}\left\|\varphi^{(j)}\right\|_{j}^{*} \quad \text { for } \varphi^{(j)} \in V_{j}^{*} .
\end{aligned}
$$

There are two extreme reasonable crossnorm. The strongest is the projective norm

$$
\|\mathbf{v}\|_{\wedge}:=\inf \left\{\sum_{i=1}^{m} \prod_{j=1}^{d}\left\|v_{i}^{(j)}\right\|_{j}: \mathbf{v}=\sum_{i=1}^{m} \bigotimes_{j=1}^{d} v_{i}^{(j)}\right\}
$$

The weakest is

DEFINITION. For $\mathbf{v} \in \mathbf{V}={ }_{a} \otimes_{j=1}^{d} V_{j}$ define $\|\cdot\|_{V}$ by

$$
\|\mathbf{v}\|_{V}:=\sup \left\{\frac{\left|\left(\varphi^{(1)} \otimes \varphi^{(2)} \otimes \ldots \otimes \varphi^{(d)}\right)(\mathbf{v})\right|}{\left\|\varphi^{(j)}\right\|_{1}^{*}\left\|\varphi^{(j)}\right\|_{2}^{*} \cdot \ldots \cdot\left\|\varphi^{(j)}\right\|_{d}^{*}}: 0 \neq \varphi^{(j)} \in V_{j}^{*}, 1 \leq j \leq d\right\}
$$

(injective norm [Grothendieck 1953]).

THEOREM. A norm $\|\cdot\|$ on ${ }_{a} \otimes_{j=1}^{d} V_{j}$, for which

$$
\begin{array}{ll}
\bigotimes_{j=1}^{d}: & V_{1} \times \ldots \times V_{d} \rightarrow{ }_{a} \bigotimes_{j=1}^{d} V_{j} \text { and } \\
\bigotimes_{j=1}^{d} & : \\
V_{1}^{*} \times \ldots \times V_{d}^{*} \rightarrow a \bigotimes_{j=1}^{d} V_{j}^{*}
\end{array}
$$

are continuous, cannot be weaker than $\|\cdot\|_{\vee}$, i.e.,

$$
\|\cdot\| \gtrsim\|\cdot\|_{V} .
$$

We recall the definition of $\varphi^{[j]}:=\otimes_{k \neq j} \varphi^{(k)}\left(\varphi^{(k)} \in V_{k}^{\prime}\right)$ by

$$
\varphi^{[j]}\left(\bigotimes_{k=1}^{d} v^{(k)}\right)=\left(\prod_{k \neq j} \varphi^{(k)}\left(v^{(k)}\right)\right) v^{(j)}
$$

LEMMA. $\varphi \in{ }_{a} \otimes_{k \in\{1, \ldots, d\} \backslash\{j\}} V_{j}^{*}$ is continuous, i.e., $\varphi \in \mathcal{L}\left(\vee \otimes_{k=1}^{d} V_{k}, V_{j}\right)$. Its norm is

$$
\|\varphi\|_{V_{j} \leftarrow \vee \bigotimes_{k=1}^{d} V_{k}}=\prod_{k \in\{1, \ldots, d\} \backslash\{j\}}\left\|v_{k}^{*}\right\|_{k}^{*}
$$

Consequence: $\varphi \in{ }_{a} \otimes_{k \in\{1, \ldots, d\} \backslash\{j\}} V_{j}^{*}$ is well defined for topological tensors $\mathbf{v} \in \vee \otimes_{k=1}^{d} V_{k}$. The same conclusion holds for stronger norms than $\|\cdot\|_{\vee}$, in particular for all reasonable crossnorms.

Assume $\|\cdot\| \gtrsim\|\cdot\|_{V}$.
MAIN THEOREM. For $\mathbf{v}_{n} \in a \otimes_{j=1}^{d} V_{j}$ assume $\mathbf{v}_{n} \rightharpoonup \mathbf{v} \in_{\|\cdot\|} \otimes_{j=1}^{d} V_{j}$. Then

$$
\operatorname{dim} U_{j}^{\min }(\mathrm{v}) \leq \liminf _{n \rightarrow \infty} \operatorname{dim} U_{j}^{\min }\left(\mathbf{v}_{n}\right) \quad \text { for all } 1 \leq j \leq d
$$

THEOREM. The sets \mathcal{T}_{r} and \mathcal{H}_{r} are weakly closed.
PROOF. Let $\mathbf{v}_{n} \in \mathcal{T}_{\mathbf{r}}$, i.e., there are subspaces $U_{j, n}$ with $\mathbf{v}_{n} \in \otimes_{j=1}^{d} U_{j, n}$ and $\operatorname{dim} U_{j, n} \leq r_{j}$. Note that $U_{j}^{\min }\left(\mathbf{v}_{n}\right) \subset U_{j, n}$ with $\operatorname{dim} U_{j}^{\min }\left(\mathbf{v}_{n}\right) \leq r_{j}$.

If $\mathbf{v}_{n} \rightharpoonup \mathbf{v}$, then $\operatorname{dim} U_{j, \min }(\mathbf{v}) \leq r_{j}$ and therefore $\mathbf{v} \in \mathcal{T}_{\mathbf{r}}$. Similar for $\mathcal{H}_{\mathbf{r}}$.

Application to Best Approximation

THEOREM. Let $(X,\|\cdot\|)$ be a reflexive Banach space with a weakly closed subset $\emptyset \neq M \subset X$. Then for any $x \in X$ there exists a best approximation $v \in M$ with

$$
\|x-v\|=\inf \{\|x-w\|: w \in M\}
$$

LEMMA A. If $x_{n} \rightharpoonup x$, then $\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\|$.
LEMMA B. If X is a reflexive Banach space, any bounded sequence $x_{n} \in X$ has a subsequence $x_{n_{i}}$ converging weakly to some $x \in X$.

PROOF of the Theorem. Choose $w_{n} \in M$ with $\left\|x-w_{n}\right\| \rightarrow \inf \{\|x-w\|: w \in M\}$. Since $\left(w_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence in X, LEMMA B ensures the existence of a subsequence $w_{n_{i}} \rightharpoonup v \in X . v$ belongs to M because $w_{n_{i}} \in M$ and M is weakly closed. Since also $x-w_{n_{i}} \rightharpoonup x-v$, LEMMA A shows $\|x-v\| \leq \lim \inf \left\|x-w_{n_{i}}\right\| \leq \inf \{\|x-w\|: w \in M\}$.

Conclusion for $M \in\left\{\mathcal{T}_{\mathbf{r}}, \mathcal{H}_{\mathbf{r}}\right\}$:
COROLLARY. Let $\|\cdot\|$ satisfy $\|\cdot\| \gtrsim\|\cdot\|_{V}$ and let $(V,\|\cdot\|)$ be reflexive. Then best approximations in the formats \mathcal{T}_{r} and \mathcal{H}_{r} exist.

9 Properties of the HOSVD Projection

We recall: The Tucker and hierarchical representation may be based on the HOSVD bases $\left\{b_{\ell}^{(\alpha)}: 1 \leq \ell \leq r_{\alpha}\right\}$. The HOSVD projection is of the form

$$
P=P_{\alpha} \otimes P_{\alpha^{c}} \quad \text { with } P_{\alpha} b_{\ell}^{(\alpha)}=\left\{\begin{array}{cc}
b_{\ell}^{(\alpha)} & \text { for } 1 \leq \ell \leq s_{\alpha} \\
0 & \text { for } s_{\alpha}<\ell \leq r_{\alpha}
\end{array}\right.
$$

Let

$$
\mathbf{u}_{\mathrm{HOSVD}}=P \mathbf{v}
$$

LEMMA. Let $\phi_{j} \mathbf{v}=0$ for some $\phi_{j}=i d \otimes \ldots \otimes \varphi_{j} \otimes i d \otimes \ldots \otimes i d, \varphi_{j} \in V_{j}^{\prime}$. Then also $\phi_{j} \mathbf{u}_{\mathrm{HOSVD}}=0$.

LEMMA. If $\mathbf{v} \in \mathbf{V}$ belongs to the domain of ϕ_{j}, then also $\mathbf{u}_{\text {HOSVD }}$ belongs to the domain and satisfies

$$
\left\|\phi_{j} \mathbf{u}_{\mathrm{HOSVD}}\right\| \leq\left\|\phi_{j} \mathbf{v}\right\| .
$$

Application: $\left\|\partial^{k} \mathbf{u}_{\mathrm{HOSVD}} / \partial x_{j}^{k}\right\|_{L^{2}} \leq\left\|\partial^{k} \mathbf{v} / \partial x_{j}^{k}\right\|_{L^{2}}$.

L^{∞} Estimates

Problem:

- HOSVD projection uses the underlying Hilbert norm $\left(L^{2}\right)$
- Pointwise evaluations require the maximum norm $\left(L^{\infty}\right)$

Gagliardo-Nirenberg inequality:

$$
\begin{aligned}
\|\varphi\|_{\infty} & \leq c_{m}^{\Omega}|\varphi|_{m}^{\frac{d}{2 m}}\|\varphi\|_{L^{2}}^{1-\frac{d}{2 m}}, \quad \text { where } \\
|\varphi|_{m} & :=\left(\int_{\Omega} \sum_{j=1}^{d}\left|\frac{\partial^{m} \varphi}{\partial x_{j}^{m}}\right|^{2} \mathrm{~d} x\right)^{1 / 2}
\end{aligned}
$$

For $\Omega=\mathbb{R}^{d}$ we have

$$
\lim _{m \rightarrow \infty} c_{m}^{\Omega}=\pi^{-d / 2}
$$

10 Graph-Based Formats

10.1 Matrix-Product (TT) Format

```
\{1,2,3,4,5,6,7\}
\(\{1,2,3,4,5,6\}\{7\}\)
\(\{1,2,3,4,5\}\{6\}\)
\(\{1,2,3,4\}\{5\}\)
\(\{1,2,3\} \quad\{4\}\)
\(\{1,2\}\{3\}\)
```

A particular binary tree is ${ }^{\{1\}}\{2\}$. It leads to the TT format (Oseledets-Tyrtyshnikov 2005) and coincides with the description of the matrix product states (Vidal 2003, Verstraete-Cirac 2006) used in physics:
Each component $\mathbf{v}\left[i_{1}, \ldots, i_{d}\right]$ of $\mathbf{v} \in \mathbf{V}=\bigotimes_{j=1}^{d} \mathbb{K}^{n_{j}}$ is expressed by

$$
\mathbf{v}\left[i_{1} i_{2} \cdots i_{d}\right]=M^{(1)}\left[i_{1}\right] \cdot M^{(2)}\left[i_{2}\right] \cdot \ldots \cdot M^{(d-1)}\left[i_{d-1}\right] \cdot M^{(d)}\left[i_{d}\right] \in \mathbb{K}
$$

where $M^{(j)}[i]$ are matrices of size $r_{j-1} \times r_{j}$ with $r_{0}=r_{d}=1$.

To avoid the special roles of the vectors $M^{(1)}\left[i_{1}\right], M^{(d)}\left[i_{d}\right]$ and to describe periodic situations, the Cyclic Matrix-Product format $\mathcal{C}\left(d,\left(r_{j}\right),\left(n_{j}\right)\right), n_{j}=\operatorname{dim} V_{j}$, is used in physics:

$$
\begin{aligned}
& \mathbf{v}\left[i_{1} i_{2} \cdots i_{d}\right]=\operatorname{trace}\left\{M^{(1)}\left[i_{1}\right] \cdot M^{(2)}\left[i_{2}\right] \cdots \cdot M^{(d-1)}\left[i_{d-1}\right] \cdot M^{(d)}\left[i_{d}\right]\right\} \\
= & \sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} M_{k_{d} k_{1}}^{(1)}\left[i_{1}\right] \cdot M_{k_{1} k_{2}}^{(2)}\left[i_{2}\right] \cdot \cdots \cdot M^{(d-1)}\left[i_{d-1}\right] \cdot M_{k_{d-1} k_{d}}{ }^{(d)}\left[i_{d}\right] .
\end{aligned}
$$

Tensor Network: tensor representations based on general graphs.

THEOREM (Landsberg-Qi-Ye 2012) Formats based on a graph \neq tree are in general not closed.

10.2 Intermezzo: Algebra Structure Tensors

V algebra, i.e. vector space with additional operation $\circ,\left\{b_{k}\right\}$ basis of V.
The operation is completely described by the coefficients $s_{i j k}$ in

$$
b_{i} \circ b_{j}=\sum_{k} s_{i j k} b_{k}
$$

Let $b_{i}^{*} \in V^{\prime}$ the dual element with $\left\langle\sum_{k} \alpha_{k} b_{k}, b_{i}^{*}\right\rangle=\alpha_{i}$. Then

$$
\mathrm{s}:=\sum_{i, j, k} s_{i j k} b_{i}^{*} \otimes b_{j}^{*} \otimes b_{k} \in V^{\prime} \otimes V^{\prime} \otimes V
$$

is the structure tensor of the algebra.

Remark. For $v, w \in V$ we have $v \circ w=(v \otimes w \otimes i d) \mathbf{s}$.
Proof: Let $v=\sum_{i} v_{i} b_{i}$ and $w=\sum_{j} w_{j} b_{j}$. Then

$$
\begin{aligned}
(v \otimes w \otimes i d) \mathbf{s} & =\sum_{i, j, k} s_{i j k}\left\langle v, b_{i}^{*}\right\rangle\left\langle w, b_{j}^{*}\right\rangle b_{k}=\sum_{i, j, k} s_{i j k} v_{i} w_{j} b_{k}=\sum_{i, j} v_{i} w_{j} \sum_{k} s_{i j k} b_{k} \\
& =\sum_{i, j} v_{i} w_{j} b_{i} \circ b_{j}=\left(\sum_{i} v_{i} b_{i}\right) \circ\left(\sum_{j} w_{j} b_{j}\right)=v \circ w .
\end{aligned}
$$

Matrix Multiplication

Consider $V=\mathbb{K}^{2 \times 2}, \circ=*$ is the matrix multiplication.
The basis of V is $\left\{E_{p q}: 1 \leq p, q \leq 2\right\}$, where $E_{p q}[i, j]= \begin{cases}1 & \text { for }(i, j)=(p, q) \\ 0 & \text { otherwise. }\end{cases}$
LEMMA. The structure tensor of the matrix multiplication is

$$
\mathbf{m}:=\sum_{i_{1}=1}^{2} \sum_{i_{2}=1}^{2} \sum_{i_{3}=1}^{2} E_{i_{1}, i_{2}}^{*} \otimes E_{i_{2}, i_{3}}^{*} \otimes E_{i_{1}, i_{3}} \in V^{\prime} \otimes V^{\prime} \otimes V
$$

Proof. Let $A, B \in \mathbb{K}^{2 \times 2}$ and $C:=A B$. Then

$$
(A \otimes B \otimes i d) \mathbf{m}=\sum_{i_{1}, i_{2}, i_{3}=1}^{2} A_{i_{1}, i_{2}} B_{i_{2}, i_{3}} E_{i_{1}, i_{3}}=\sum_{i_{1}, i_{3}=1}^{2} C_{i_{1}, i_{3}} E_{i_{1}, i_{3}}=C .
$$

THEOREM: $\operatorname{rank}(\mathrm{m})=\underline{\operatorname{rank}}(\mathrm{m})=7$.

Strassen, 1969: $\operatorname{rank}(\mathbf{m}) \leq 7 ; \quad$ Winograd, 1971: $\operatorname{rank}(\mathbf{m})=7$;
Landsberg, 2012: $\operatorname{rank}(\mathrm{m})=7$.

10.3 Cyclic Matrix-Product Format

We recall the Cyclic Matrix-Product Format $\mathcal{C}\left(d,\left(r_{j}\right),\left(n_{j}\right)\right)$

$$
\begin{aligned}
& \mathrm{v}\left[i_{1} i_{2} \cdots i_{d}\right]=\operatorname{trace}\left\{M^{(1)}\left[i_{1}\right] \cdot M^{(2)}\left[i_{2}\right] \cdots \cdots M^{(d-1)}\left[i_{d-1}\right] \cdot M^{(d)}\left[i_{d}\right]\right\} \\
& =\sum_{k_{1}=1}^{r_{1}} \cdots \sum_{k_{d}=1}^{r_{d}} M_{k_{d} k_{1}}^{(1)}\left[i_{1}\right] \cdot M_{k_{1} k_{2}}^{(2)}\left[i_{2}\right] \cdot \cdots \cdot M^{(d-1)}\left[i_{d-1}\right] \cdot M_{k_{d-1} k_{d}}^{(d)}\left[i_{d}\right] .
\end{aligned}
$$

A subcase is the site-independent format Matrix-Product Format $\mathcal{C}_{\text {ind }}(d, r, n)$ with

$$
\begin{aligned}
M^{(j)}[i] & =M[i] \\
r_{j} & =r, \\
V_{j} & =V \quad \text { for all } j, \\
n & =\operatorname{dim} V
\end{aligned}
$$

THEOREM (Landsberg-Qi-Ye 2012) Formats based on a graph \neq tree are in general not closed.
10.4 Result for $d=3, \mathbf{V}=\otimes^{3} \mathbb{K}^{2 \times 2}, r_{1}=r_{2}=r_{3}=2$ by Harris-Michałek-Sertöz 2018

Let

$$
\mathrm{m}:=\sum_{k_{1}, k_{2}, k_{3}=1}^{2} E_{k_{3}, k_{1}} \otimes E_{k_{1} k_{2}} \otimes E_{k_{2}, k_{3}} \in \bigotimes_{j=1}^{3} \mathbb{K}^{2 \times 2}
$$

$\left\{E_{p q}: 1 \leq p, q \leq 2\right\}$ is the canonical basis of $\mathbb{K}^{2 \times 2}$.
LEMMA. Let $\mathbf{V}=\otimes_{j=1}^{3} \mathbb{K}^{2 \times 2}$. The set $\mathcal{C}\left(d=3,\left(r_{j}=2\right),\left(n_{j}=4\right)\right)$ consists of all

$$
\mathbf{v}=\Phi(\mathbf{m}) \quad \text { with } \Phi=\bigotimes_{j=1}^{3} \phi^{(j)} \text { and } \quad \phi^{(j)} \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)
$$

REMARK. a) m is equivalent to the Strassen tensor of the matrix multiplication.
b) If all $\phi^{(j)}$ are bijective, $\mathbf{v}=\Phi(\mathbf{m})$ implies that $\operatorname{rank}(\mathbf{v})=7$.

We consider the site-independent case $M^{(j)}[i]=M[i]$ for all $1 \leq j \leq d:=3$.
Define $\psi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$ by $\psi\left(E_{12}\right)=E_{12}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $\psi\left(E_{p q}\right)=0$ for $(p, q) \neq(1,2)$ and

$$
\mathbf{v}(t)=\left(\otimes^{3}(\psi+t \cdot i d)\right)(\mathbf{m})=\mathbf{v}_{0}+t \cdot \mathbf{v}_{1}+t^{2} \cdot \mathbf{v}_{2}+t^{3} \cdot \mathbf{v}_{3} \in \mathcal{C}_{\text {ind }}(3,2,4)
$$

with

$$
\begin{aligned}
& \quad \mathbf{v}_{0}=\left(\otimes^{3} \psi\right)(\mathbf{m}), \quad \mathbf{v}_{1}=[\psi \otimes \psi \otimes i d+\psi \otimes i d \otimes \psi+i d \otimes \psi \otimes \psi](\mathbf{m}), \\
& \mathbf{v}_{2}=[i d \otimes i d \otimes \psi+i d \otimes \psi \otimes i d+\psi \otimes i d \otimes i d](\mathbf{m}), \quad \mathbf{v}_{3}=\mathbf{m} . \\
& \Rightarrow \mathbf{v}_{0}=\mathbf{v}_{1}=0 \text { and } \\
& \quad \mathbf{v}_{2}=E_{21} \otimes E_{11} \otimes E_{12}+E_{22} \otimes E_{21} \otimes E_{12}+E_{11} \otimes E_{12} \otimes E_{21} \\
& \quad+E_{21} \otimes E_{12} \otimes E_{22}+E_{12} \otimes E_{21} \otimes E_{11}+E_{12} \otimes E_{22} \otimes E_{21}, \\
& \Rightarrow \operatorname{rank}\left(\mathbf{v}_{2}\right) \leq 6 . \text { The following limit exists: } \\
& \qquad \quad \mathbf{v}_{2}=\lim _{t \rightarrow 0} t^{-2} \mathbf{v}(t) \in \operatorname{closure}\left(\mathcal{C}_{\text {ind }}(3,2,4)\right)
\end{aligned}
$$

The non-closedness of $\mathcal{C}_{\text {ind }}(3,2,4)$ will follow from $\mathbf{v}_{2} \notin \mathcal{C}_{\text {ind }}(3,2,4)$.

For an indirect proof assume $\mathbf{v}_{2} \in \mathcal{C}_{\text {ind }}(3,2,4)$. The Lemma implies that there is some $\phi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$ with $\mathbf{v}_{2}=\left(\otimes^{3} \phi\right)(\mathbf{m})$.
It is easy to check that the range of the matricisation

$$
\mathcal{M}_{1}\left(\left(\otimes^{3} \phi\right)(\mathbf{m})\right)=\phi \mathcal{M}_{1}(\mathbf{m})\left(\otimes^{2} \phi\right)^{\top}
$$

is $\mathbb{K}^{2 \times 2}$. Therefore the map ϕ must be surjective.
Since $\phi \in L\left(\mathbb{K}^{2 \times 2}, \mathbb{K}^{2 \times 2}\right)$ is surjective, it is also injective and thus bijective.

By Remark (b) $\operatorname{rank}\left(\mathrm{v}_{2}\right)=\operatorname{rank}(\mathbf{m})=7$ holds in contradiction to $\operatorname{rank}\left(\mathrm{v}_{2}\right) \leq 6$.
This contradiction proves that $\mathbf{v}_{2} \notin \mathcal{C}_{\text {ind }}(3,2,4)$.

Similarly $\mathbf{v}_{2} \notin \mathcal{C}(3,(2,2,2),(4,4,4))$ follows (no site-independence).

10.5 Result for $\mathbf{V}=\otimes^{d} \mathbb{C}^{2}, r_{j}=2$

Smallest (nontrivial) dimension: $V_{j}=\mathbb{C}^{2}$,
tensor space $\mathbf{V}=\otimes^{d} \mathbb{C}^{2}$

Site-independent cyclic format $\mathcal{C}_{\text {ind }}(d, 2,2)$, i.e., $r=2$

Result:
$d=3: \mathcal{C}_{\text {ind }}(3,2,2)$ is closed (cf. Harris-Michatek-Sertöz 2018)
$d>3: \mathcal{C}_{\text {ind }}(d, 2,2)$ is not closed (cf. Tim Seynnaeve 2018)

Same for $\mathbb{K}=\mathbb{R}$

Extension to Larger Spaces

$d \geq 4:$
$\mathcal{C}_{\text {ind }}(d, r=2, n=2)$ not closed $\Rightarrow \mathcal{C}_{\text {ind }}(d, r=2, n)$ not closed for all $n \geq 2$.

Missing case
$\mathcal{C}_{\text {ind }}(3,2,2)$ closed, $\mathcal{C}_{\text {ind }}(3,2,4)$ not closed
Also $\mathcal{C}_{\text {ind }}(3,2,3)$ is not closed (Tim Seynnaeve, technical proof).

Case of $r \geq 3$
$\mathbf{V}_{c y c l}:=\{\mathbf{v} \in \mathbf{V}: \pi \mathbf{v}=\mathbf{v}\}$ for $\pi:(1,2, \ldots, d) \mapsto(2, \ldots, d, 1)$

Let $d>3, n \geq 2, \mathbb{K}=\mathbb{C}$ or d odd:
a) $\mathcal{C}_{\text {ind }}(d, r, n)$ not closed for $r=2$
b) r sufficiently large $\Rightarrow \mathcal{C}_{\text {ind }}(d, r, n)=\mathbf{V}_{c y c l} \Rightarrow \mathcal{C}_{\text {ind }}(d, r, n)$ closed.

Another reason for closedness of $\mathcal{C}_{\text {ind }}(3,2,2)$ (Proof: Tim Seynnaeve):

$$
\mathcal{C}_{\text {ind }}(3,2,2)=\mathbf{V}_{\mathrm{cycl}} .
$$

11 Tensorisation

$V_{j}=\mathbb{R}^{n} \Rightarrow$ storage: $r d n+(d-1) r^{3}$. Now: $n \rightarrow O(\log n)$

Let the vector $y \in \mathbb{R}^{n}$ represent the grid values of a function in $(0,1]$:

$$
y_{\mu}=f\left(\frac{\mu+1}{n}\right) \quad(0 \leq \mu \leq n-1) .
$$

Choose, e.g., $n=2^{d}$, and note that $\mathbb{R}^{n} \cong \mathrm{~V}:=\bigotimes_{j=1}^{d} \mathbb{R}^{2}$.
Isomorphism by binary integer representation:
$\mu=\sum_{j=1}^{d} \mu_{j} 2^{j-1}$ with $\mu_{j} \in\{0,1\}$, i.e.,

$$
y_{\mu}=\mathbf{v}\left[\mu_{1}, \mu_{2}, \ldots, \mu_{d-1}, \mu_{d}\right] .
$$

Algebraic Function Compression (black-box procedure)

1) Tensorisation: $y \in \mathbb{R}^{n} \longmapsto \mathbf{v} \in \mathbf{V}$ (storage size: $n=2^{d}$)
2) Apply the tensor truncation: $\mathbf{v} \longmapsto \mathbf{v}_{\varepsilon}$
3) Observation: often the data size decreases from $n=2^{d}$ to $O(d)=O(\log n)$.

EXAMPLE

$y \in \mathbb{C}^{n}$ with $y_{\mu}=\zeta^{\mu}$ leads to an elementary tensor $\mathbf{v} \in \mathbf{V}$, i.e.,

$$
\mathbf{v}=\bigotimes_{j=1}^{d} v^{(j)} \quad \text { with } v^{(j)}=\left[\begin{array}{c}
1 \\
\zeta^{2^{j-1}}
\end{array}\right] \in \mathbb{C}^{2}
$$

Storage size $=2 d=2 \log _{2} n$.

Consequence:

All functions $f \in C((0,1])$, which can be well-approximated by r trigonometric terms or exponential sums with r terms (even with complex coefficients \rightarrow Bessel functions) can be approximated by a tensor representation with data size

$$
2 d r=O(r \log n) .
$$

Example:

$f(x)=1 /(x+\delta) \in C((0,1]), \delta \geq 0$, can be well-approximated by exponential sums (cf. Braess-H.):

$$
\begin{array}{ll}
& f(x) \approx \sum_{\nu=1}^{r} a_{\nu} \exp \left(-b_{\nu} x\right) \quad\left(a_{\nu}, b_{\nu}>0\right) \\
\text { error: } \quad & O\left(n \exp \left(-2^{1 / 2} \pi r^{1 / 2}\right)\right) \text { if } \delta=0, \\
& O(\exp (-c r)) \quad \text { if } \delta=O(1)
\end{array}
$$

Storage size:

$$
2 d r=2 r \log _{2} n=O\left(\log ^{2}(\varepsilon) \log (n)\right)
$$

Hierarchical Format, Matricisation

(also called TT format)

Consider the tensorisation $\mathbf{v} \in \bigotimes_{j=1}^{d} \mathbb{R}^{2}$ of the vector $y=\left(y_{0}, \ldots, y_{n-1}\right) \in \mathbb{R}^{n}$.
The matricisation for $\alpha=\{1, \ldots, j\}(1 \leq j \leq d-1)$ yields

$$
\mathcal{M}_{\alpha}(\mathbf{v})=\left[\begin{array}{llll}
y_{0} & y_{m} & \cdots & y_{n-m} \\
y_{1} & y_{m+1} & \cdots & y_{n-m+1} \\
\vdots & \vdots & & \vdots \\
y_{m-1} & y_{2 m-1} & \cdots & y_{n-1}
\end{array}\right] \text { with } m:=2^{j}
$$

Recall: $\operatorname{rank}_{\alpha}(\mathbf{v})=\operatorname{dim} \mathcal{M}_{\alpha}(\mathbf{v})$.

p-Methods

$f(x) \approx \tilde{f}(x)=\sum_{k=1}^{r} a_{k} e^{2 \pi i(k-1)}$ trigonometric approximation
\Rightarrow tensorisation, storage $2 d r=2 r \log _{2} n$, error $\leq\|f-\tilde{f}\|$
Similar for $\tilde{f}(x)=\sum_{k=1}^{r} a_{k} \sin (2 \pi i k)$ etc.
Polynomials:
$f(x) \approx P(x), P$ polynomial of degree $\leq p$

An r-term representation $\sum_{i=1}^{r} \bigotimes_{j=1}^{d} v_{i}^{(j)}$ does not work well.
Instead, the hierarchical format (in particular, the TT format) is used.

Conclusion for polynomial p-methods

If $\mathbf{f} \approx \mathbf{P}$ with a polynomial \mathbf{P} of degree $\leq p(\Rightarrow$ data size $p+1)$, then the tensorised grid function \mathbf{f} can be approximated by a tensor $\tilde{\mathbf{f}}$ such that the TT ranks are bounded by $\rho_{j} \leq p+1$:

$$
\|\mathbf{f}-\tilde{\mathbf{f}}\|_{2} \leq\|\mathbf{f}-\mathbf{P}\|_{2}
$$

The data size is bounded by

$$
\leq 2 d(p+1)^{2}
$$

hp Method

Let f be an asymptotically smooth function in $(0,1]$ with possible singularity at $x=0$, e.g., $f(x)=x^{x}$.
Use the (best) piecewise polynomial approximation \tilde{f} (by degree p) in all intervals

$$
\left[0, \frac{1}{n}\right],\left[\frac{1}{n}, \frac{2}{n}\right],\left[\frac{2}{n}, \frac{4}{n}\right], \ldots,\left[\frac{1}{4}, \frac{1}{2}\right],\left[\frac{1}{2}, 1\right] .
$$

Required data size of hp method: $(p+1) \log _{2} n$. Tensor ranks:

$$
\begin{aligned}
r_{1} & \leq \operatorname{dim}\left(\operatorname{span}\left\{\left.\tilde{f}\right|_{[(\mu-1) h, \mu h]}: 1 \leq \mu \leq n\right\}\right) \leq p+1 \\
r_{2} & \leq \operatorname{dim}\left(\operatorname{span}\left\{\left.\tilde{f}\right|_{[(\mu-1) 2 h, \mu 2 h]}: 1 \leq \mu \leq \frac{n}{2}\right\}\right) \leq p+2, \\
r_{3} & \leq \operatorname{dim}\left(\operatorname{span}\left\{\left.\tilde{f}\right|_{[(\mu-1) 4 h, \mu 4 h]}: 1 \leq \mu \leq \frac{n}{4}\right\}\right) \leq p+2,
\end{aligned}
$$

Hence, the data size of the tensorisation of \tilde{f} is bounded by

$$
d(p+2)^{2}=(p+2)^{2} \log _{2} n
$$

THEOREM (Grasedyck 2010) f asymptotically smooth with m point singularities. Then the data size of \mathbf{v}_{ε} corresponding exactly to a piecewise polynomial approximation is characterised by

$$
r=O(1)+\log _{2} \frac{1}{\varepsilon}+2 m
$$

